Skip to main content
Log in

Problem of Compromise Allocation in Multivariate Stratified Sampling Using Intuitionistic Fuzzy Programming

  • Published:
Annals of Data Science Aims and scope Submit manuscript

This article has been updated

Abstract

The investigators always have difficulty selecting a sample for the practical use of the stratified random sampling, such that the precision of the finite population under cost constraints is optimized significantly. Identifying stratum boundaries in stratified sample design also includes an essential recurrent challenge in the sampling process. This study presents a realistic way to stratify the population observation based on compromise analysis. The problem is formulated as a deterministic multivariate stratified sampling optimization model with integer variables and is solved by intuitionistic fuzzy programming. Computational studies using two instances demonstrate the optimization of variances inside the strata, therefore considerably reducing accompanying standard errors. Since the suggested model seeks to minimize variances, it can be applied, for example, microeconomic simulation studies, in which an accurate sample is crucial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Required data is available in the paper.

Change history

  • 29 June 2022

    The original version is updated due to the missing of word "Institute" in the affiliation 1.

References

  1. Cochran WG (1977) Double sampling. In: Cochran WG (ed) Sampling techniques, 3rd edn. Wiley, New York, pp 327–58

    Google Scholar 

  2. Neyman J (1992) On the two different aspects of the representative method: the method of stratified sampling and the method of purposive selection. In: Breakthroughs in statistics. Springer, New York, NY, pp 123–150

  3. Mahalanobis PC (1944) On large-scale sample surveys. Philos Trans R Soc Lond B Biol Sci 231(584):329–451

    Article  Google Scholar 

  4. Stuart A (1954) A simple presentation of optimum sampling results. J R Stat Soc Series B Stat Methodol 16(2):239–241. https://doi.org/10.1111/j.2517-6161.1954.tb00165.x

    Article  Google Scholar 

  5. Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York

    Google Scholar 

  6. Ghosh SP (1958) A note on stratified random sampling with multiple characters. Bull Calcutta Stat Assoc 8(2–3):81–90. https://doi.org/10.1177/0008068319580204

    Article  Google Scholar 

  7. Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining: theory and applications. Springer, Berlin

    Book  Google Scholar 

  8. Folks JL, Antle CE (1965) Optimum allocation of sampling units to strata when there are R responses of interest. J Am Stat Assoc 60(309):225–233. https://doi.org/10.1080/01621459.1965.10480786

    Article  Google Scholar 

  9. Kokan AR, Khan S (1967) Optimum allocation in multivariate surveys: An analytical solution. J R Stat Soc Ser B Stat Methodol 29(1):115–125. https://doi.org/10.1111/j.2517-6161.1967.tb00679.x

    Article  Google Scholar 

  10. Chatterjee S (1967) A note on optimum allocation. Scand Actuar J 1–2:40–44. https://doi.org/10.1080/03461238.1967.10406206

    Article  Google Scholar 

  11. Chatterjee S (1968) Multivariate stratified surveys. J Am Stat Assoc 63(322):530–534

    Google Scholar 

  12. Ahsan MJ, Khan SU (1977) Optimum allocation in multivariate stratified random sampling using prior information. J Indian Stat Assoc 15:57–67

    Google Scholar 

  13. Bethel J (1989) Sample allocation in multivariate surveys. Surv Methodol 15(1):47–57

    Google Scholar 

  14. Jahan N, Khan MG, Ahsan MJ (1994) A generalized compromise allocation. J Indian Stat Assoc 32:95–101

    Google Scholar 

  15. Khan MG, Ahsan MJ, Jahan N (1997) Compromise allocation in multivariate stratified sampling: an integer solution. Nav Res Logist 44(1):69–79. https://doi.org/10.1002/(SICI)1520-6750(199702)44:1%3c69::AID-NAV4%3e3.0.CO;2-K

    Article  Google Scholar 

  16. Khan MG, Khan EA, Ahsan MJ (2003) Theory & methods: An optimal multivariate stratified sampling design using dynamic programming. Aust N Z J Stat 45(1):107–113. https://doi.org/10.1111/1467-842X.00264

    Article  Google Scholar 

  17. Khan MG, Khan EA, Ahsan MJ (2008) Optimum allocation in multivariate stratified sampling in presence of nonresponse. Indian J Agric Sci 62(1):42–48

    Google Scholar 

  18. Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4(2):149–178. https://doi.org/10.1007/s40745-017-0112-5

    Article  Google Scholar 

  19. Shi Y (2022) Advances in Big Data Analytics: Theory, Algorithms and Practices. Springer, New York

    Book  Google Scholar 

  20. Díaz-García JA, Cortez LU (2008) Multi-objective optimisation for optimum allocation in multivariate stratified sampling. Surv Methodol 34(2):215–222

    Google Scholar 

  21. Kozak M (2006) Multivariate sample allocation: application of random search method. Stat Transit 7(4):889–900

    Google Scholar 

  22. Kozak M (2006) On sample allocation in multivariate surveys. Commun Stat B Simul Comput 35(4):901–910. https://doi.org/10.1080/03610910600880286

    Article  Google Scholar 

  23. Khan MG, Khowaja S, Ghufran S, Varshney R, Ahsan MJ (2010) A comparative study of various compromise criteria in multiple qualitative response stratified sampling. J Stat Sci 2(1):1–12

    Google Scholar 

  24. Ghufran S, Khowaja S, Ahsan MJ (2011) Multi-objective optimal allocation problem with probabilistic nonlinear cost constraint. Int J Eng Sci Technol 3(6):135–145. https://doi.org/10.4314/ijest.v3i6.11

    Article  Google Scholar 

  25. Ghufran S, Khowaja S, Ahsan MJ (2011) A multiple response stratified sampling design with travel cost. South Pac J Nat Appl Sci 29(1):31–39. https://doi.org/10.1071/SP11007

    Article  Google Scholar 

  26. Ghufran S, Khowaja S, Ahsan MJ (2012) Optimum multivariate stratified sampling designs with travel cost: a multi-objective integer nonlinear programming approach. Commun Stat B Simul Comput 41(5):598–610. https://doi.org/10.1080/03610918.2011.598995

    Article  Google Scholar 

  27. Ghufran S, Khowaja S, Ahsan MJ (2013) Optimum allocation in two-stage stratified randomized response model. J Math Model Algorithms Oper Res 12(4):383–392. https://doi.org/10.1007/s10852-013-9217-9

    Article  Google Scholar 

  28. Ghufran S, Khowaja S, Ahsan MJ (2014) Compromise allocation in multivariate stratified sample surveys under two stage randomized response model. Optim Lett 8(1):343–357. https://doi.org/10.1007/s11590-012-0581-6

    Article  Google Scholar 

  29. Khowaja S, Ghufran S, Ahsan MJ (2011) Estimation of population means in multivariate stratified random sampling. Commun Stat B: Simul Comput 40(5):710–718

    Article  Google Scholar 

  30. Khowaja S, Ghufran S, Ahsan MJ (2012) Multi-objective optimization for optimum allocation in multivariate stratified sampling with quadratic cost. J Stat Comput Simul 82(12):1789–1798. https://doi.org/10.1080/00949655.2011.595716

    Article  Google Scholar 

  31. Khowaja S, Ghufran S, Ahsan MJ (2013) On the problem of compromise allocation in multi-response stratified sample surveys. Commun Stat B Simul Comput 42(4):790–799. https://doi.org/10.1080/03610918.2011.650262

    Article  Google Scholar 

  32. Varshney R, Ahsan MJ, Khan MG (2011) An optimum multivariate stratified sampling design with nonresponse: a lexicographic goal programming approach. J Math Model Algorithms 10(4):393–405. https://doi.org/10.1007/s10852-011-9164-2

    Article  Google Scholar 

  33. Varshney R, Ahsan MJ (2011) Compromise mixed allocation in multivariate stratified sampling. J Indian Soc Agric Stat 65(3):291–296

    Google Scholar 

  34. Varshney R, Ahsan MJ (2012) An optimum multivariate stratified double sampling design in presence of nonresponse. Optim Lett 6(5):993–1008. https://doi.org/10.1007/s11590-011-0329-8

    Article  Google Scholar 

  35. Varshney R, Ahsan MJ (2012) Estimation of more than one parameters in stratified sampling with fixed budget. Math Methods Oper Res 75(2):185–197. https://doi.org/10.1007/s00186-012-0380-y

    Article  Google Scholar 

  36. Varshney R, Gupta S, Ali I (2017) An optimum multivariate-multiobjective stratified sampling design: fuzzy programming approach. Pak J Stat Oper Res. https://doi.org/10.18187/pjsor.v13i4.1834

    Article  Google Scholar 

  37. Ghufran S, Gupta S, Ahmed A (2021) A fuzzy compromise approach for solving multi-objective stratified sampling design. Neural Comput Appl 33(17):10829–10840. https://doi.org/10.1007/s00521-020-05152-7

    Article  Google Scholar 

  38. Haq A, Ali I, Varshney R (2020) Compromise allocation problem in multivariate stratified sampling with flexible fuzzy goals. J Stat Comput Simul 90(9):1557–1569. https://doi.org/10.1080/00949655.2020.1734808

    Article  Google Scholar 

  39. Jana B, Roy TK (2007) Multi-objective intuitionistic fuzzy linear programming and its application in transportation model. Notes IFS 13(1):34–51

    Google Scholar 

  40. Wan SP, Li DF (2014) Atanassov’s intuitionistic fuzzy programming method for heterogeneous multiattribute group decision making with atanassov’s intuitionistic fuzzy truth degrees. IEEE Trans Fuzzy Syst 22(2):300–312. https://doi.org/10.1109/TFUZZ.2013.2253107

    Article  Google Scholar 

  41. Wan SP, Dong JY (2015) Interval-valued intuitionistic fuzzy mathematical programming method for hybrid multi-criteria group decision making with interval-valued intuitionistic fuzzy truth degrees. Inf Fusion 26:49–65. https://doi.org/10.1016/j.inffus.2015.01.006

    Article  Google Scholar 

  42. Zhang W, Ju Y, Liu X (2017) Interval-valued intuitionistic fuzzy programming technique for multi-criteria group decision making based on Shapley values and incomplete preference information. Soft Comput 21(19):5787–5804. https://doi.org/10.1007/s00500-016-2157-3

    Article  Google Scholar 

  43. Jafarian E, Razmi J, Baki MF (2018) A flexible programming approach based on intuitionistic fuzzy optimization and geometric programming for solving multi-objective nonlinear programming problems. Expert Syst Appl 93:245–256. https://doi.org/10.1016/j.eswa.2017.10.030

    Article  Google Scholar 

  44. Gupta P, Mehlawat MK, Yadav S, Kumar A (2019) A polynomial goal programming approach for intuitionistic fuzzy portfolio optimization using entropy and higher moments. Appl Soft Comput J 85:105781. https://doi.org/10.1016/j.asoc.2019.105781

    Article  Google Scholar 

  45. Zeng S, Chen SM, Fan KY (2020) Interval-valued intuitionistic fuzzy multiple attribute decision making based on nonlinear programming methodology and TOPSIS method. Inf Sci 506:424–442. https://doi.org/10.1016/j.ins.2019.08.027

    Article  Google Scholar 

  46. Wan S, Dong J (2020) Interval-valued intuitionistic fuzzy mathematical programming method for hybrid multi-criteria group decision making with interval-valued intuitionistic fuzzy truth degrees. In: Decision making theories and methods based on interval-valued intuitionistic fuzzy sets. Springer, pp 71–114. https://doi.org/10.1007/978-981-15-1521-7_3

  47. Khan MF, Haq A, Ahmed A, Ali I (2021) Multiobjective multi-product production planning problem using intuitionistic and neutrosophic fuzzy programming. IEEE Access 9:37466–37486. https://doi.org/10.1109/ACCESS.2021.3063725

    Article  Google Scholar 

  48. Gupta S, Chaudhary S, Chatterjee P, Yazdani M (2021) An efficient stochastic programming approach for solving integrated multi-objective transportation and inventory management problem using goodness of fit. Kybernetes 51(2):768–803. https://doi.org/10.1108/K-08-2020-0495

    Article  Google Scholar 

  49. Jaggi CK, Haq A, Maheshwari S (2020) Multi-objective production planning problem for a lock industry: a case study and mathematical analysis. Investig Oper 41:893–901

    Google Scholar 

  50. Tariq M, Bari A, Beig AR (2020) A new fuzzy multiobjective geometric programming in double sampling in presence of nonresponse. IEEE Access 8:45009–45022. https://doi.org/10.1109/ACCESS.2020.2973935

    Article  Google Scholar 

  51. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  Google Scholar 

  52. Mahajan S, Gupta SK (2021) On fully intuitionistic fuzzy multiobjective transportation problems using different membership functions. Ann Oper Res 296(1):211–241. https://doi.org/10.1007/s10479-019-03318-8

    Article  Google Scholar 

  53. Ebrahimnejad A, Verdegay JL (2018) A new approach for solving fully intuitionistic fuzzy transportation problems. Fuzzy Optim Decis Mak 17(4):447–474. https://doi.org/10.1007/s10700-017-9280-1

    Article  Google Scholar 

  54. Ansari AH, Varshney R, Ahsan MJ (2011) An optimum multivariate-multiobjective stratified sampling design. Metron 69(3):227–250. https://doi.org/10.1007/BF03263559

    Article  Google Scholar 

Download references

Funding

There was no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikant Gupta.

Ethics declarations

Code Availability

C83, C61.

Ethical statements

I hereby declare that this manuscript is the result of my independent creation under the reviewers’ comments. Except for the quoted contents, this manuscript does not contain any research achievements that have been published or written by other individuals or groups. I am the only author of this manuscript. The legal responsibility of this statement shall be borne by me.

Author contributions

Conceptualization: Srikant Gupta, Ahteshamul Haq, Rahul Varshney; Data curation: Srikant Gupta, Ahteshamul Haq; Formal analysis: Ahteshamul Haq, Rahul Varshney; Investigation: Srikant Gupta, Ahteshamul Haq; Methodology: Srikant Gupta, Rahul Varshney; Project administration: Srikant Gupta, Rahul Varshney; Supervision: Srikant Gupta, Ahteshamul Haq; Validation: Srikant Gupta, Ahteshamul Haq; Visualization: Srikant Gupta, Ahteshamul Haq, Rahul Varshney; Writing – original draft: Srikant Gupta, Ahteshamul Haq, Rahul Varshney; Writing – review & editing: Srikant Gupta, Ahteshamul Haq, Rahul Varshney.

Conflict of interest

I declare that there is no conflict of interest in the publication of this article, and that there is no conflict of interest with any other author or institution for the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Haq, A. & Varshney, R. Problem of Compromise Allocation in Multivariate Stratified Sampling Using Intuitionistic Fuzzy Programming. Ann. Data. Sci. 11, 425–444 (2024). https://doi.org/10.1007/s40745-022-00410-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40745-022-00410-y

Keywords

Navigation