Skip to main content
Log in

Impact of Multi-walled Carbon Nanotubes as an Additive in Lithium Grease to Enhance the Tribological and Dynamic Performance of Roller Bearing

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Multi-walled carbon nanotubes (MWCNTs) have gained a lot of interest in recent years as a lubricant additive for enhancing sliding and rolling interactions in machine elements. The tribological characteristics and dynamic behavior of roller bearing lubricated with lithium base grease and MWCNTs blended lithium grease are investigated in this work. In this work, the parameters of traction coefficient, asperity load ratio, lubricant layer stiffness, micromorphology of the worn surface, and vibration analysis are evaluated for the 1000 h of bearing testing. The experimental analysis revealed significant increases in lubricant film stiffness and asperity load ratio using MWCNTs nanoparticles. The resulting decreases in vibration levels of the roller bearing lubricated with MWCNTs mixed with lithium grease verified these findings. By decreasing the traction coefficient value and dynamic behavior of the roller bearings findings demonstrated the advantages of adopting the MMWCNTs as additives in the grease-lubricated machine elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, M. Amarnath, upon reasonable request.

Abbreviations

a, b:

Semi-major and minor axes of the contact ellipse

\(b\) :

Half-Hertzian width (m)

B:

Contact length (m)

\({D}_{m}\) :

Mean diameter (m)

\({D}_{b}\) :

Roller diameter (m)

\(E\) :

Elastic modulus (Pa)

\({E}{\prime}\) :

Effective modulus of elasticity, \(\frac{1}{{\mathbf{E}}^{\mathbf{^{\prime}}}}=\frac{1}{2}\left\{\frac{1-{{\varvec{\upsigma}}}_{1}^{2}}{{\mathbf{E}}_{1}}-\frac{1-{{\varvec{\upsigma}}}_{2}^{2}}{{\mathbf{E}}_{2}}\right\}\)

f :

Traction coefficient

F:

Total normal load (N)

\({F}_{f}\) :

Traction force (N)

\({f}_{c}\) :

Asperity friction coefficient

\(G\) :

Dimensionless elasticity number, \({\varvec{\upalpha}}{\mathbf{E}}^{\mathbf{^{\prime}}}\)

\({h}_{c}\) :

Central film thickness (m)

\({h}_{min}\) :

Minimum film thickness (m)

h :

Film thickness for line-contact EHL

\({H}_{c}\) :

Dimensionless central film thickness

\({H}_{min}\) :

Dimensionless minimum film thickness

k:

Ellipticity ratio, \(\frac{\mathbf{a}}{\mathbf{b}}\)

\({L}_{a}\) :

Asperity load ratio

N:

Shaft rotation (rpm)

\({p}_{h}\) :

Average hydrodynamic pressure, \({\varvec{p}}\left(1-{{\varvec{L}}}_{{\varvec{a}}}/100\right)\)

\(p\) :

Average contact pressure (Pa)

q:

Applied load per unit length \(\left({\mathrm{Nm}}^{-1}\right)\)

\({R}_{1}\), \({R}_{2}\) :

Radius of curvature in the rolling direction

\(R\) :

Effective radius in the rolling direction, \(\frac{{\mathbf{R}}_{1}{\mathbf{R}}_{2}}{{\mathbf{R}}_{1}\pm {\mathbf{R}}_{2}}\)

\({R}_{a}\), \({R}_{b}\) :

RMS surface roughness value of contact surfaces

\({u}_{r}\) :

Rolling speed, \(\frac{1}{2}\left({{\varvec{U}}}_{1}+{{\varvec{U}}}_{1}\right)\)

\({u}_{s}\) :

Sliding speed of contact surface, \(\left|{{\varvec{U}}}_{1}-{{\varvec{U}}}_{2}\right|\)

\({U}_{1}\), \({U}_{2}\) :

Contact surface velocity \(\left({\mathrm{ms}}^{-2}\right)\)

\(U\) :

Dimensionless speed number, \(\frac{{{\varvec{\mu}}}_{0}\overline{{\varvec{u}}}}{{{\varvec{E}} }^{\boldsymbol{^{\prime}}}{\varvec{R}}}\)

\(V\) :

Dimensionless hardness number, \(\frac{{\varvec{v}}}{{{\varvec{E}}}^{\boldsymbol{^{\prime}}}}\)

\(W\) :

Dimensionless load number

z:

Number of rollers/balls

\(\upmu\) :

Viscosity at pressure P and temperature T

\({\mu }_{0}\) :

Viscosity at a reference pressure \({P}_{0}\) and temperature \({T}_{0}\)

\(\alpha\) :

Pressure-viscosity coefficient

\(\beta\) :

Temperature-viscosity coefficient

\(\sigma\) :

Poisson’s ratio

\({\sigma }{\prime}\) :

Standard deviation of the surface roughness height

\(\tilde{\sigma }\) :

Dimensionless surface roughness number, \(\frac{{{\varvec{\sigma}}}^{\boldsymbol{^{\prime}}}}{{\varvec{R}}}\)

\(v\) :

Vickers hardness

\({\tau }_{lim}\) :

Limiting shear stress

\({\mu }_{avg}\) :

Average lubricant viscosity, \({\mu }_{0}exp\left\{\left(ln{\mu }_{0}+9.67\right)\left[-1+{\left(1+5.1\times {10}^{-9}{p}_{h} \right)}^{z}\right]{K}_{T}\Delta T\right\}\)

θ:

Contact angle

λ:

Specific film thickness

References

  1. Adamczak, S., Stępień, K., Wrzochal, M.: comparative study of measurement systems used to evaluate vibrations of rolling bearings. Procedia Eng. 192, 971–975 (2017). https://doi.org/10.1016/j.proeng.2017.06.167

    Article  Google Scholar 

  2. Masjedi, M., Khonsari, M.M.: On the effect of surface roughness in point-contact EHL: formulas for film thickness and asperity load. Tribol. Int. 82, 228–244 (2015). https://doi.org/10.1016/j.triboint.2014.09.010

    Article  Google Scholar 

  3. Masjedi, M., Khonsari, M.M.: An engineering approach for rapid evaluation of traction coefficient and wear in mixed EHL. Tribol. Int. 92, 184–190 (2015). https://doi.org/10.1016/j.triboint.2015.05.013

    Article  Google Scholar 

  4. Lugt, P.M., Velickov, S., Tripp, J.H.: On the chaotic behavior of grease lubrication in rolling bearings. Tribol. Trans. 52, 581–590 (2009). https://doi.org/10.1080/10402000902825713

    Article  CAS  Google Scholar 

  5. Lugt, P.M.: Modern advancements in lubricating grease technology. Tribol. Int. 97, 467–477 (2016). https://doi.org/10.1016/j.triboint.2016.01.045

    Article  CAS  Google Scholar 

  6. Kumar, N., Saini, V., Bijwe, J.: Dependency of lithium complex grease on the size of hBN particles for enhanced performance. Tribol Lett. 71, 20 (2023). https://doi.org/10.1007/s11249-022-01691-3

    Article  CAS  Google Scholar 

  7. Vardhaman, B.S.A., Amarnath, M., Ramkumar, J., Mondal, K.: Enhanced tribological performances of zinc oxide/MWCNTs hybrid nanomaterials as the effective lubricant additive in engine oil. Mater. Chem. Phys. 253, 123447 (2020). https://doi.org/10.1016/j.matchemphys.2020.123447

    Article  CAS  Google Scholar 

  8. Antony, J.P., Mittal, B.D., Naithani, K.P., Misra, A.K., Bhatnagar, A.K.: Antiwear/extreme pressure performance of graphite and molybdenum disulphide combinations in lubricating greases. Wear 174, 33–37 (1994). https://doi.org/10.1016/0043-1648(94)90083-3

    Article  CAS  Google Scholar 

  9. Yan, T., Ingrassia, L.P., Kumar, R., Turos, M., Canestrari, F., Lu, X., Marasteanu, M.: Evaluation of graphite nanoplatelets influence on the lubrication properties of asphalt binders. Materials 13, 772 (2020). https://doi.org/10.3390/ma13030772

    Article  CAS  Google Scholar 

  10. Zhang, Z., Liu, W., Xue, Q.: Friction and wear behaviors of the complexes of rare earth hexadecylate as grease additive. Wear 215, 40–45 (1998). https://doi.org/10.1016/S0043-1648(97)00284-6

    Article  CAS  Google Scholar 

  11. Meng, Y., Xu, J., Jin, Z., Prakash, B., Hu, Y.: A review of recent advances in tribology. Friction. 8, 221–300 (2020). https://doi.org/10.1007/s40544-020-0367-2

    Article  Google Scholar 

  12. Fan, X., Wang, L.: Ionic liquids gels with in situ modified multiwall carbon nanotubes towards high-performance lubricants. Tribol. Int. 88, 179–188 (2015). https://doi.org/10.1016/j.triboint.2015.03.026

    Article  CAS  Google Scholar 

  13. Peña-Parás, L., Maldonado-Cortés, D., Kharissova, O.V., Saldívar, K.I., Contreras, L., Arquieta, P., Castaños, B.: Novel carbon nanotori additives for lubricants with superior anti-wear and extreme pressure properties. Tribol. Int. 131, 488–495 (2019). https://doi.org/10.1016/j.triboint.2018.10.039

    Article  CAS  Google Scholar 

  14. Tahmasebi Sulgani, M., Karimipour, A.: Improve the thermal conductivity of 10w40-engine oil at various temperature by addition of Al2O3/Fe2O3 nanoparticles. J. Mol. Liq. 283, 660–666 (2019). https://doi.org/10.1016/j.molliq.2019.03.140

    Article  CAS  Google Scholar 

  15. Christensen, G., Younes, H., Hong, G., Lou, D., Hong, H., Widener, C., Bailey, C., Hrabe, R.: Hydrogen bonding enhanced thermally conductive carbon nano grease. Synth. Metals. 259, 116213 (2020). https://doi.org/10.1016/j.synthmet.2019.116213

    Article  CAS  Google Scholar 

  16. Kamel, B.M., Mohamed, A., El Sherbiny, M., Abed, K.A.: Rheology and thermal conductivity of calcium grease containing multi-walled carbon nanotube. Fuller. Nanotub. Carbon Nanostruct. 24, 260–265 (2016). https://doi.org/10.1080/1536383X.2016.1143462

    Article  CAS  Google Scholar 

  17. Mohamed, A., Osman, T.A., Khattab, A., Zaki, M.: Tribological behavior of carbon nanotubes as an additive on lithium grease. J. Tribol. (2014). https://doi.org/10.1115/1.4028225

    Article  Google Scholar 

  18. Aboul-Enein, A.A., Arafa, E.I., Abdel-Azim, S.M., Awadallah, A.E.: Synthesis of multiwalled carbon nanotubes from polyethylene waste to enhance the rheological behavior of lubricating grease. Fuller. Nanotub. Carbon Nanostruct. (2021). https://doi.org/10.1080/1536383X.2020.1806828

    Article  Google Scholar 

  19. Ashour, M.E., Osman, T.A., Khattab, A., Elshalakny, A.B.: Novel tribological behavior of Hybrid MWCNTs/MLNGPs as an additive on lithium grease. J. Tribol. (2017). https://doi.org/10.1115/1.4035345

    Article  Google Scholar 

  20. Wu, C., Yang, K., Chen, Y., Ni, J., Yao, L., Li, X.: Investigation of friction and vibration performance of lithium complex grease containing nano-particles on rolling bearing. Tribology International. 155, 106761 (2021). https://doi.org/10.1016/j.triboint.2020.106761

    Article  CAS  Google Scholar 

  21. Nassef, M.G.A., Soliman, M., Nassef, B.G., Daha, M.A., Nassef, G.A.: Impact of graphene nano-additives to lithium grease on the dynamic and tribological behavior of rolling bearings. Lubricants 10, 29 (2022). https://doi.org/10.3390/lubricants10020029

    Article  CAS  Google Scholar 

  22. Masjedi, M., Khonsari, M.M.: Theoretical and experimental investigation of traction coefficient in line-contact EHL of rough surfaces. Tribol. Int. 70, 179–189 (2014). https://doi.org/10.1016/j.triboint.2013.10.004

    Article  Google Scholar 

  23. Gupta, P.K.: Advanced dynamics of rolling elements. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  24. Hamrock, B.J., Schmid, S.R., Jacobson, B.O.: Fundamentals of fluid film lubrication. CRC Press, Boca Raton (2004)

    Book  Google Scholar 

  25. Johnson, K.L., Greenwood, J.A., Poon, S.Y.: A simple theory of asperity contact in elastohydro-dynamic lubrication. Wear 19, 91–108 (1972). https://doi.org/10.1016/0043-1648(72)90445-0

    Article  Google Scholar 

  26. Gelinck, E.R.M., Schipper, D.J.: Deformation of rough line contacts. J. Tribol. 121, 449–454 (1999). https://doi.org/10.1115/1.2834088

    Article  Google Scholar 

  27. Gelinck, E.R.M., Schipper, D.J.: Calculation of Stribeck curves for line contacts. Tribol. Int. 33, 175–181 (2000). https://doi.org/10.1016/S0301-679X(00)00024-4

    Article  Google Scholar 

  28. Masjedi, M., Khonsari, M.M.: Film thickness and asperity load formulas for line-contact elastohydrodynamic lubrication with provision for surface roughness. J. Tribol. (2012). https://doi.org/10.1115/1.4005514

    Article  Google Scholar 

  29. Wu, C., Xiong, R., Ni, J., Teal, P.D., Cao, M., Li, X.: Effect of grease on bearing vibration performance caused by short-time high-temperature exposure. J Braz. Soc. Mech. Sci. Eng. 42, 69 (2019). https://doi.org/10.1007/s40430-019-2126-8

    Article  CAS  Google Scholar 

  30. Laissaoui, A., Bouzouane, B., Miloudi, A., Hamzaoui, N.: Perceptive analysis of bearing defects (contribution to vibration monitoring). Appl. Acoust. 140, 248–255 (2018). https://doi.org/10.1016/j.apacoust.2018.06.004

    Article  Google Scholar 

  31. Wang, Z., Zhu, C.: A new model for analyzing the vibration behaviors of rotor-bearing system. Commun. Nonlinear Sci. Numer. Simul. 83, 105130 (2020). https://doi.org/10.1016/j.cnsns.2019.105130

    Article  Google Scholar 

  32. Niu, L., Cao, H., Hou, H., Wu, B., Lan, Y., Xiong, X.: Experimental observations and dynamic modeling of vibration characteristics of a cylindrical roller bearing with roller defects. Mech. Syst. Signal Process. 138, 106553 (2020). https://doi.org/10.1016/j.ymssp.2019.106553

    Article  Google Scholar 

  33. Blau, P.J.: Running-in. In: Wang, Q.J., Chung, Y.-W. (eds.) Encyclopedia of tribology, pp. 2967–2969. Springer, Boston (2013)

    Chapter  Google Scholar 

  34. Clarke, A., Weeks, I.J.J., Snidle, R.W., Evans, H.P.: Running-in and micropitting behaviour of steel surfaces under mixed lubrication conditions. Tribol. Int. 101, 59–68 (2016)

    Article  CAS  Google Scholar 

  35. Zhou, Y., Wang, Z., Wang, J., Zuo, X., Xu, J.: Improving running-in quality and efficiency of journal bearing with ZB and SiO2 nanoparticles as lubricant additive. Surf. Topogr.: Metrol. Prop. 10, 035030 (2022). https://doi.org/10.1088/2051-672X/ac8fab

    Article  Google Scholar 

  36. Chern, S.-Y., Ta, T.-N., Horng, J.-H., Wu, Y.-S.: Wear and vibration behavior of ZDDP-Containing oil considering scuffing failure. Wear 478, 203923 (2021)

    Article  Google Scholar 

  37. Bourlon, B., Glattli, D.C., Miko, C., Forró, L., Bachtold, A.: Carbon nanotube based bearing for rotational motions. Nano Lett. 4, 709–712 (2004). https://doi.org/10.1021/nl035217g

    Article  CAS  Google Scholar 

  38. Beheshti, A., Khonsari, M.M.: An engineering approach for the prediction of wear in mixed lubricated contacts. Wear 308, 121–131 (2013)

    Article  CAS  Google Scholar 

  39. Stacke, L.-E., Fritzson, D.: Dynamic behaviour of rolling bearings: Simulations and experiments. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 215, 499–508 (2001). https://doi.org/10.1243/1350650011543754

    Article  Google Scholar 

  40. Serrato, R., Maru, M.M., Padovese, L.R.: Effect of lubricant viscosity grade on mechanical vibration of roller bearings. Tribol. Int. 40, 1270–1275 (2007). https://doi.org/10.1016/j.triboint.2007.01.025

    Article  CAS  Google Scholar 

  41. SciELO - Brazil - The influence of contact stress distribution and specific film thickness on the wear of spur gears during pitting tests The influence of contact stress distribution and specific film thickness on the wear of spur gears during pitting tests, https://www.scielo.br/j/jbsmse/a/KLbfYKKpHJntHTjP7HmbmJR/abstract/?lang=en

  42. Cen, H., Lugt, P.M., Morales-Espejel, G.: On the film thickness of grease-lubricated contacts at low speeds. Tribol. Trans. 57, 668–678 (2014)

    Article  CAS  Google Scholar 

  43. Cen, H., Lugt, P.M.: Film thickness in a grease lubricated ball bearing. Tribol. Int. 134, 26–35 (2019)

    Article  Google Scholar 

  44. Kochi, T., Ichimura, R., Yoshihara, M., Dong, D., Kimura, Y.: Film thickness and traction in soft EHL with grease. Tribol. Online. 12, 171–176 (2017)

    Article  Google Scholar 

  45. Chow, L.S.H., Cheng, H.S.: The effect of surface roughness on the average film thickness between lubricated rollers. J. Lubr. Technol. 98, 117–124 (1976). https://doi.org/10.1115/1.3452743

    Article  Google Scholar 

  46. Grubin, A.N.: Fundamentals of the hydrodynamic theory of lubrication of heavily loaded cylindrical surfaces. Investig. Contact Mach. Compon. (1949). https://doi.org/10.1007/978-0-387-92897-5_625

    Article  Google Scholar 

  47. Zhang, K., Liu, K., Gao, T., Qiao, Y., Zhang, Y., Liu, X., Wang, W., Ye, J.: The unrecognized importance of roughness directionality to polymer wear. Wear 486, 204084 (2021)

    Article  Google Scholar 

  48. Jiang, X., Hua, D.Y., Cheng, H.S., Ai, X., Lee, S.C.: A mixed elastohydrodynamic lubrication model with asperity contact. J. Tribol. 121, 481–491 (1999). https://doi.org/10.1115/1.2834093

    Article  Google Scholar 

  49. Wu, M., Han, X., Tao, Y., Pei, J.: A mixed EHL analysis method for grease and formulas for film thickness and asperity load. Tribol Lett. 70, 128 (2022). https://doi.org/10.1007/s11249-022-01666-4

    Article  Google Scholar 

  50. Horowitz, H.H.: Predicting effects of temperature and shear rate on viscosity of viscosity index-improved lubricants. Ind. Eng. Chem. (1958). https://doi.org/10.1021/ie50583a0502

    Article  Google Scholar 

  51. Cann, P.M.: Grease degradation in a bearing simulation device. Tribol. Int. 39, 1698–1706 (2006). https://doi.org/10.1016/j.triboint.2006.01.029

    Article  CAS  Google Scholar 

  52. Pandey, S., Amarnath, M.: Applications of vibro-acoustic measurement and analysis in conjunction with tribological parameters to assess surface fatigue wear developed in the roller-bearing system. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 235, 2034–2055 (2021). https://doi.org/10.1177/1350650120982465

    Article  Google Scholar 

  53. Olver, A.V.: The mechanism of rolling contact fatigue: an update. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 219, 313–330 (2005)

    Article  CAS  Google Scholar 

  54. Halme, J., Andersson, P.: Rolling contact fatigue and wear fundamentals for rolling bearing diagnostics - state of the art. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 224, 377–393 (2010). https://doi.org/10.1243/13506501JET656

    Article  Google Scholar 

  55. Sarangi, M., Majumdar, B.C., Sekhar, A.S.: Stiffness and damping characteristics of lubricated ball bearings considering the surface roughness effect. Part 2: numerical results and application. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 218, 539–548 (2004). https://doi.org/10.1243/1350650042794734

    Article  Google Scholar 

  56. Cerullo, M.: Application of Dang Van criterion to rolling contact fatigue in wind turbine roller bearings under elastohydrodynamic lubrication conditions. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 228, 2079–2089 (2014). https://doi.org/10.1177/0954406213516946

    Article  Google Scholar 

  57. Bhushan, B.: Contact mechanics of rough surfaces in tribology: multiple asperity contact. Tribol. Lett. 4, 1–35 (1998). https://doi.org/10.1023/A:1019186601445

    Article  Google Scholar 

  58. Karacay, T., Akturk, N.: Experimental diagnostics of ball bearings using statistical and spectral methods. Tribol. Int. 42, 836–843 (2009). https://doi.org/10.1016/j.triboint.2008.11.003

    Article  Google Scholar 

  59. Singh, P., Harsha, S.: Statistical and frequency analysis of vibrations signals of roller bearings using empirical mode decomposition. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 233, 856–870 (2019). https://doi.org/10.1177/1464419319847921

    Article  Google Scholar 

  60. Senatore, A., Hong, H., D’Urso, V., Younes, H.: Tribological behavior of novel CNTs-based lubricant grease in steady-state and fretting sliding conditions. Lubricants. 9, 107 (2021). https://doi.org/10.3390/lubricants9110107

    Article  CAS  Google Scholar 

  61. Zhang, L., Pu, J., Wang, L., Xue, Q.: Synergistic effect of hybrid carbon nanotube-graphene oxide as nanoadditive enhancing the frictional properties of ionic liquids in high vacuum. ACS Appl. Mater. Interfaces. 7, 8592–8600 (2015). https://doi.org/10.1021/acsami.5b00598

    Article  CAS  Google Scholar 

  62. Lonkar, S.P., Kushwaha, O.S., Leuteritz, A., Heinrich, G., Singh, R.P.: Self photostabilizing UV-durable MWCNT/polymer nanocomposites. RSC Adv. 2, 12255–12262 (2012). https://doi.org/10.1039/C2RA21583G

    Article  CAS  Google Scholar 

  63. Salah, N., Abdel-Wahab, M.S., Alshahrie, A., Alharbi, N.D., Khan, Z.H.: Carbon nanotubes of oil fly ash as lubricant additives for different base oils and their tribology performance. RSC Adv. 7, 40295–40302 (2017). https://doi.org/10.1039/C7RA07155H

    Article  CAS  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

Author 1—Experimental data collection, characterization, and analysis, as well as manuscript writing; author 2—Concept; author 3—Corrections.

Corresponding author

Correspondence to M. Amarnath.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, D.K., Amarnath, M. & Chelladurai, H. Impact of Multi-walled Carbon Nanotubes as an Additive in Lithium Grease to Enhance the Tribological and Dynamic Performance of Roller Bearing. Tribol Lett 71, 88 (2023). https://doi.org/10.1007/s11249-023-01763-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-023-01763-y

Keywords

Navigation