Skip to main content
Log in

Corrosion Inhibition by Indazole Derivatives in 1 M HCl Medium: Experimental and Computational Studies

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

In this work, we studied the inhibitory effect of two indazole derived compounds named 2-methyl-6-nitro-2Hindazole (6NI2) and 1-ethyl-6-nitro-3a,7a-dihydro-1H-indazole (6NE1) on the corrosion of C38 steel in 1 M HCl solution, using electrochemical impedance spectroscopy, potentiodynamic polarization, and mass loss measurements in different concentrations and temperatures (298 K, 308 K, 318 K, and 328 K). The results showed that the efficiency of our compounds increases with the increase of inhibitor concentration in the solution to reach maximum values of 94.73% and 96.49% at 10–3 M of 6NE1 and 6NI2, respectively. The increase in temperature negatively influences the inhibition efficiency of both compounds down to 79.04% and 80.10% at 10−3 M of 6NE1 and 6NI2, respectively, at 382 K. Thermodynamic and kinetic parameters controlling the adsorption process are calculated and discussed. The polarization curves show that both 6NE1 and 6NI2 act as mixed-type inhibitors. The adsorption mode of 6NE1 and 6NI2 obeys the Langmuir adsorption isotherm. In addition, the Nyquist curves showed that the increase of the inhibitor concentration results in the increase of the charge transfer resistance and the decrease of the double layer capacity. The surface of the C38 steel was investigated using SEM and EDS technics. DFT calculations and Molecular dynamics simulations have approved the correlation of the inhibition efficiency with the experimental study of our inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article. Any further datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Galai M et al (2020) Chemically functionalized of 8-hydroxyquinoline derivatives as efficient corrosion inhibition for steel in 1.0 M HCl solution: Experimental and theoretical studies ». Surf Interfaces 21:100695. https://doi.org/10.1016/j.surfin.2020.100695

    Article  CAS  Google Scholar 

  2. Hassan HH, Abdelghani E, Amin MA (2007) Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives. Electrochim Acta 52(22):6359–6366. https://doi.org/10.1016/j.electacta.2007.04.046

    Article  CAS  Google Scholar 

  3. Bentiss F et al (2009) Corrosion control of mild steel using 3,5-bis(4-methoxyphenyl)-4-amino-1,2,4-triazole in the normal hydrochloric acid medium. Corros Sci 51(8):1628–1635. https://doi.org/10.1016/j.corsci.2009.04.009

    Article  CAS  Google Scholar 

  4. Labjar N, Lebrini M, Bentiss F, Chihib N-E, Hajjaji SE, Jama C (2010) Corrosion inhibition of carbon steel and antibacterial properties of aminotris-(methylenephosphonic) acid. Mater Chem Phys 119(1–2):330–336. https://doi.org/10.1016/j.matchemphys.2009.09.006

    Article  CAS  Google Scholar 

  5. Kadiri L et al (2018) Coriandrum sativum L. seeds extract as a novel green corrosion inhibitor for mild steel in 10 M hydrochloric and 05 M sulfuric solutions. Anal Bioanal Electrochem 10(2):21

    Google Scholar 

  6. Mirinioui A, El Attari H, Fdil R, Zefzoufi M, Jorio S (2021) Dysphania ambrosioides essential oil: an eco-friendly inhibitor for mild steel corrosion in hydrochloric and sulfuric acid medium. J Bio- Tribo-Corros 7(4):150. https://doi.org/10.1007/s40735-021-00584-7

    Article  Google Scholar 

  7. Belghiti ME et al (2020) Understanding the adsorption of newly Benzylidene-aniline derivatives as a corrosion inhibitor for carbon steel in hydrochloric acid solution: experimental, DFT and molecular dynamic simulation studies. Arab J Chem 13(1):1499–1519. https://doi.org/10.1016/j.arabjc.2017.12.003

    Article  CAS  Google Scholar 

  8. Chkirate K et al (2021) Corrosion inhibition potential of 2-[(5-methylpyrazol-3-yl)methyl]benzimidazole against carbon steel corrosion in 1 M HCl solution: combining experimental and theoretical studies. J Mol Liq 321:114750. https://doi.org/10.1016/j.molliq.2020.114750

    Article  CAS  Google Scholar 

  9. Saha SK, Dutta A, Ghosh P, Sukul D, Banerjee P (2015) Adsorption and corrosion inhibition effect of Schiff base molecules on the mild steel surface in 1 M HCl medium: a combined experimental and theoretical approach. Phys Chem Chem Phys 17(8):5679–5690. https://doi.org/10.1039/C4CP05614K

    Article  CAS  Google Scholar 

  10. Alaoui K et al (2016) Anti-corrosive properties of polyvinyl-alcohol for carbon steel in hydrochloric acid media : electrochemical and thermodynamic investigation. J Mater Environ Sci 7:15

    Google Scholar 

  11. Alaoui K, Kacimi YE, Galai M, Dahmani K, Harfi AE, Touhami ME (2016) Poly (1-phenylethene): as a novel corrosion inhibitor for carbon steel/hydrochloric acid interface. Anal Bioanal Electrochem 8(7):19

    Google Scholar 

  12. Nochaiya T, Suriwong T, Julphunthong P (2022) Acidic corrosion-abrasion resistance of concrete containing fly ash and silica fume for use as concrete floors in pig farm. Case Stud Constr Mater 16:e01010. https://doi.org/10.1016/j.cscm.2022.e01010

    Article  Google Scholar 

  13. Zadeh AS, Zandi MS, Kazemipour M (2022) Corrosion protection of carbon steel in acidic media by expired bupropion drug; experimental and theoretical study. J Indian Chem Soc 99(7):100522. https://doi.org/10.1016/j.jics.2022.100522

    Article  CAS  Google Scholar 

  14. Faydy ME et al (2016) Experimental and theoretical studies for steel XC38 corrosion inhibition in 1 M HCl by N-(8-hydroxyquinolin-5-yl)-methyl)- N-phenylacetamide. J Mater Environ Sci 7:11

    Google Scholar 

  15. Zohdy KM, El-Shamy AM, Kalmouch A, Gad EAM (2019) The corrosion inhibition of (2Z,2′Z)-4,4′-(1,2-phenylene bis(azanediyl))bis(4-oxobut-2-enoic acid) for carbon steel in acidic media using DFT. Egypt J Pet 28(4):355–359. https://doi.org/10.1016/j.ejpe.2019.07.001

    Article  Google Scholar 

  16. Lebrini M, Traisnel M, Lagrenée M, Mernari B, Bentiss F (2008) Inhibitive properties, adsorption and a theoretical study of 3,5-bis(n-pyridyl)-4-amino-1,2,4-triazoles as corrosion inhibitors for mild steel in perchloric acid. Corros Sci 50(2):473–479. https://doi.org/10.1016/j.corsci.2007.05.031

    Article  CAS  Google Scholar 

  17. Guo L, Tan J, Kaya S, Leng S, Li Q, Zhang F (2020) Multidimensional insights into the corrosion inhibition of 3,3-dithiodipropionic acid on Q235 steel in H2SO4 medium: a combined experimental and in silico investigation. J Colloid Interface Sci 570:116–124. https://doi.org/10.1016/j.jcis.2020.03.001

    Article  CAS  Google Scholar 

  18. Guo L, Zhang R, Tan B, Li W, Liu H, Wu S (2020) Locust Bean Gum as a green and novel corrosion inhibitor for Q235 steel in 0.5 M H2SO4 medium. J Mol Liq 310:113239. https://doi.org/10.1016/j.molliq.2020.113239

    Article  CAS  Google Scholar 

  19. Saha SK, Murmu M, Murmu NC, Banerjee P (2021) Synthesis, characterization and theoretical exploration of pyrene based Schiff base molecules as corrosion inhibitor. J Mol Struct 1245:131098. https://doi.org/10.1016/j.molstruc.2021.131098

    Article  CAS  Google Scholar 

  20. Jmiai A et al (2020) The effect of the two biopolymers “sodium alginate and chitosan” on the inhibition of copper corrosion in 1 M hydrochloric acid. Mater Today Proc 22:12–15. https://doi.org/10.1016/j.matpr.2019.08.057

    Article  CAS  Google Scholar 

  21. Tourabi M, Nohair K, Traisnel M, Jama C, Bentiss F (2013) Electrochemical and XPS studies of the corrosion inhibition of carbon steel in hydrochloric acid pickling solutions by 3,5-bis(2-thienylmethyl)-4-amino-1,2,4-triazole. Corros Sci 75:123–133. https://doi.org/10.1016/j.corsci.2013.05.023

    Article  CAS  Google Scholar 

  22. Bouanis M, Tourabi M, Nyassi A, Zarrouk A, Jama C, Bentiss F (2016) Corrosion inhibition performance of 2,5-bis(4-dimethylaminophenyl)-1,3,4-oxadiazole for carbon steel in HCl solution: gravimetric, electrochemical and XPS studies. Appl Surf Sci 389:952–966. https://doi.org/10.1016/j.apsusc.2016.07.115

    Article  CAS  Google Scholar 

  23. Ouici H et al (2017) Adsorption and corrosion inhibition properties of 5-amino 1,3,4-thiadiazole-2-thiol on the mild steel in hydrochloric acid medium: Thermodynamic, surface and electrochemical studies. J Electroanal Chem 803:125–134. https://doi.org/10.1016/j.jelechem.2017.09.018

    Article  CAS  Google Scholar 

  24. Saha SK, Murmu M, Murmu NC, Obot IB, Banerjee P (2018) Molecular level insights for the corrosion inhibition effectiveness of three amine derivatives on the carbon steel surface in the adverse medium: a combined density functional theory and molecular dynamics simulation study. Surf Interfaces 10:65–73. https://doi.org/10.1016/j.surfin.2017.11.007

    Article  CAS  Google Scholar 

  25. Errahmany N et al (2020) Experimental, DFT calculations and MC simulations concept of novel quinazolinone derivatives as corrosion inhibitor for mild steel in 1.0 M HCl medium. J Mol Liq 312:113413. https://doi.org/10.1016/j.molliq.2020.113413

    Article  CAS  Google Scholar 

  26. El Ibrahimi B, Baddouh A, Oukhrib R, El Issami S, Hafidi Z, Bazzi L (2021) Electrochemical and in silico investigations into the corrosion inhibition of cyclic amino acids on tin metal in the saline environment. Surf Interfaces 23:100966. https://doi.org/10.1016/j.surfin.2021.100966

    Article  CAS  Google Scholar 

  27. Ouakki M et al (2020) Investigation of imidazole derivatives as corrosion inhibitors for mild steel in sulfuric acidic environment: experimental and theoretical studies. Ionics 26(10):5251–5272. https://doi.org/10.1007/s11581-020-03643-0

    Article  CAS  Google Scholar 

  28. Ben-Yahia A, Benchidmi M, Essassi EM (2018) L’INDAZOLE ET SES DERIVES : SYNTHESES, REACTIVITES ET PROPRIETES BIOLOGIQUES. Moroccan J Heterocycl Chem 17:38

    Google Scholar 

  29. Liu Q et al (2021) A novel indazole derivative, compound Cyy-272, attenuates LPS-induced acute lung injury by inhibiting JNK phosphorylation. Toxicol Appl Pharmacol 428:115648. https://doi.org/10.1016/j.taap.2021.115648

    Article  CAS  Google Scholar 

  30. Dong R et al (2022) Design, synthesis and anticancer evaluation of 3-methyl-1H-indazole derivatives as novel selective bromodomain-containing protein 4 inhibitors. Bioorg Med Chem 55:116592. https://doi.org/10.1016/j.bmc.2021.116592

    Article  CAS  Google Scholar 

  31. Saha SK, Murmu M, Murmu NC, Banerjee P (2022) Benzothiazolylhydrazine azomethine derivatives for efficient corrosion inhibition of mild steel in acidic environment: Integrated experimental and density functional theory cum molecular dynamics simulation approach. J Mol Liq 364:120033. https://doi.org/10.1016/j.molliq.2022.120033

    Article  CAS  Google Scholar 

  32. Saha SK, Banerjee P (2018) Introduction of newly synthesized Schiff base molecules as efficient corrosion inhibitors for mild steel in 1 M HCl medium: an experimental, density functional theory and molecular dynamics simulation study. Mater Chem Front 2(9):1674–1691. https://doi.org/10.1039/C8QM00162F

    Article  CAS  Google Scholar 

  33. Dahmani K et al (2021) Quantum chemical and molecular dynamic simulation studies for the identification of the extracted cinnamon essential oil constituent responsible for copper corrosion inhibition in acidified 3.0 wt% NaCl medium. Inorg Chem Commun 124:108409. https://doi.org/10.1016/j.inoche.2020.108409

    Article  CAS  Google Scholar 

  34. Hamani H, Douadi T, Al-Noaimi M, Issaadi S, Daoud D, Chafaa S (2014) Electrochemical and quantum chemical studies of some azomethine compounds as corrosion inhibitors for mild steel in 1M hydrochloric acid. Corros Sci 88:234–245. https://doi.org/10.1016/j.corsci.2014.07.044

    Article  CAS  Google Scholar 

  35. Chen X, Chen Y, Cui J, Li Y, Liang Y, Cao G (2021) Molecular dynamics simulation and DFT calculation of “green” scale and corrosion inhibitor. Comput Mater Sci 188:110229. https://doi.org/10.1016/j.commatsci.2020.110229

    Article  CAS  Google Scholar 

  36. Saha SK, Banerjee P (2015) A theoretical approach to understand the inhibition mechanism of steel corrosion with two aminobenzonitrile inhibitors. RSC Adv 5(87):71120–71130. https://doi.org/10.1039/c5ra15173b

    Article  CAS  Google Scholar 

  37. Neese F et al (2014) ORCA 3.0.1 Manual (Input Description)

  38. Frisch MJ et al (2009) Gaussian 09, Revision B.01. Gaussian 09, Revis. B.01, Gaussian, Inc., Wallingford CT, pp 1–20. citeulike-article-id:9096580

  39. Simulation MC (2018) Analytical & Anal Bioanal Electrochem

  40. Benhiba F et al (2015) Theoretical prediction and experimental study of 2-phenyl-1, 4-dihydroquinoxaline as a novel corrosion inhibitor for carbon steel in 1.0 HCl. J Mater Environ Sci 6(8):2301–2314

    CAS  Google Scholar 

  41. Sastri VS, Perumareddi JR (1997) Molecular orbital theoretical studies of some organic corrosion inhibitors. Corros Sci 53:617–622

    Article  CAS  Google Scholar 

  42. Lukovits I, Kalman E, Zucchi F (2001) Corrosion inhibitors: correlation between electronic structure and efficiency. Corros Sci 57:3–8

    Article  CAS  Google Scholar 

  43. Bahlakeh G, Ghaffari M, Saeb MR, Ramezanzadeh B, De Proft F, Terryn H (2016) A close-up of the effect of iron oxide type on the interfacial interaction between epoxy and carbon steel: combined molecular dynamics simulations and quantum mechanics. J Phys Chem C 120(20):11014–11026. https://doi.org/10.1021/acs.jpcc.6b03133

    Article  CAS  Google Scholar 

  44. BM (2015) D. S. BIOVIA Support, Biovia Materials Studio 8.0 Sp1. pp 1–7

  45. Nosé S (1991) Molecular dynamics simulations at constant temperature and pressure. Comput Simul Mater Sci 2384(1980):21–41. https://doi.org/10.1007/978-94-011-3546-7_2

    Article  Google Scholar 

  46. Obi-Egbedi NO, Obot IB (2011) Inhibitive properties, thermodynamic and quantum chemical studies of alloxazine on mild steel corrosion in H2SO4. Corros Sci 53(1):263–275. https://doi.org/10.1016/j.corsci.2010.09.020

    Article  CAS  Google Scholar 

  47. Kumar S, Sharma D, Yadav P, Yadav M (2013) Experimental and quantum chemical studies on corrosion inhibition effect of synthesized organic compounds on n80 steel in hydrochloric acid. Ind Eng Chem Res 52(39):14019–14029. https://doi.org/10.1021/ie401308v

    Article  CAS  Google Scholar 

  48. Attari HE, Chefira K, Elkihel A, Siniti M, Rchid H, Benabbouha T (2017) Thermodynamic and electrochemical investigation of 2-mercaptobenzimidazole as corrosion inhibitors for mild steel C35E in hydrochloric acid solutions. Int J Sci Eng Investig 6(60):9

    Google Scholar 

  49. Benhiba F et al (2015) Theoretical prediction and experimental study of 2-phenyl-1, 4- dihydroquinoxaline as a novel corrosion inhibitor for carbon steel in 1.0 HCl. J Mater Environ Sci 6:14

    Google Scholar 

  50. Tan B et al (2022) Insight into the anti-corrosion performance of two food flavors as eco-friendly and ultra-high performance inhibitors for copper in sulfuric acid medium. J Colloid Interface Sci 609:838–851. https://doi.org/10.1016/j.jcis.2021.11.085

    Article  CAS  Google Scholar 

  51. Bahrami MJ, Hosseini SMA, Pilvar P (2010) Experimental and theoretical investigation of organic compounds as inhibitors for mild steel corrosion in sulfuric acid medium. Corros Sci 52(9):2793–2803. https://doi.org/10.1016/j.corsci.2010.04.024

    Article  CAS  Google Scholar 

  52. Batah A, Chaouiki A, El Mouden OI, Belkhaouda M, Bammou L, Salghi R (2022) Almond waste extract as an efficient organic compound for corrosion inhibition of carbon steel (C38) in HCl solution. Sustain Chem Pharm 27:100677. https://doi.org/10.1016/j.scp.2022.100677

    Article  CAS  Google Scholar 

  53. Oukhrib R, Issami E, Ibrahimi B, Mouaden K, Bazzi L (2017) Ziziphus lotus as green inhibitor of copper corrosion in natural sea water. Port Electrochimica Acta 35(4):187–200. https://doi.org/10.4152/pea.201704187

    Article  CAS  Google Scholar 

  54. Kharbach Y et al (2017) Anticorrosion performance of three newly synthesized isatin derivatives on carbon steel in hydrochloric acid pickling environment: electrochemical, surface and theoretical studies. J Mol Liq 246:302–316. https://doi.org/10.1016/j.molliq.2017.09.057

    Article  CAS  Google Scholar 

  55. Salghi R, Hmamou DB, Ebenso EE, Benali O, Zarrouk A, Hammouti B (2015) 2, 10-dimethylacridin-9(10H)-one as new synthesized corrosion inhibitor for C38 steel in 0.5 M H2SO4. Int J Electrochem Sci 10:13

    Google Scholar 

  56. Dehri İ, Özcan M (2006) The effect of temperature on the corrosion of mild steel in acidic media in the presence of some sulphur-containing organic compounds. Mater Chem Phys 98(2–3):316–323. https://doi.org/10.1016/j.matchemphys.2005.09.020

    Article  CAS  Google Scholar 

  57. Hafez B, Mokhtari M, Elmsellem H, Steli H (2019) Environmentally friendly inhibitor of the corrosion of mild steel: commercial oil of eucalyptus. Int J Corros Scale Inhib. https://doi.org/10.17675/2305-6894-2019-8-3-8

    Article  Google Scholar 

  58. Afia L et al (2014) Anti-corrosive properties of Argan oil on C38 steel in molar HCl solution. J Saudi Chem Soc 18(1):19–25. https://doi.org/10.1016/j.jscs.2011.05.008

    Article  CAS  Google Scholar 

  59. Guo W et al (2020) Corrosion inhibition of carbon steel by three kinds of expired cephalosporins in 0.1 M H2SO4. J Mol Liq 320:114295. https://doi.org/10.1016/j.molliq.2020.114295

    Article  CAS  Google Scholar 

  60. Saha SK, Dutta A, Ghosh P, Sukul D, Banerjee P (2016) Novel Schiff-base molecules as efficient corrosion inhibitors for mild steel surface in 1 M HCl medium: experimental and theoretical approach. Phys Chem Chem Phys 18(27):17898–17911. https://doi.org/10.1039/C6CP01993E

    Article  CAS  Google Scholar 

  61. Özcan M, Dehri İ, Erbil M (2004) Organic sulphur-containing compounds as corrosion inhibitors for mild steel in acidic media: correlation between inhibition efficiency and chemical structure. Appl Surf Sci 236(1–4):155–164. https://doi.org/10.1016/j.apsusc.2004.04.017

    Article  CAS  Google Scholar 

  62. Solmaz R, Kardaş G, Çulha M, Yazıcı B, Erbil M (2008) Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media. Electrochim Acta 53(20):5941–5952. https://doi.org/10.1016/j.electacta.2008.03.055

    Article  CAS  Google Scholar 

  63. Solmaz R (2010) Investigation of the inhibition effect of 5-((E)-4-phenylbuta-1,3-dienylideneamino)-1,3,4-thiadiazole-2-thiol Schiff base on mild steel corrosion in hydrochloric acid. Corros Sci 52(10):3321–3330. https://doi.org/10.1016/j.corsci.2010.06.001

    Article  CAS  Google Scholar 

  64. Saha SK, Park YJ, Kim JW, Cho SO (2019) Self-organized honeycomb-like nanoporous oxide layer for corrosion protection of type 304 stainless steel in an artificial seawater medium. J Mol Liq 296:111823. https://doi.org/10.1016/j.molliq.2019.111823

    Article  CAS  Google Scholar 

  65. Zheng H, Zhang B, Wang X, Lu Y, Li F, Li C (2023) Improved corrosion resistance of carbon steel in soft water with dendritic-polymer corrosion inhibitors. Chem Eng J 452:139043. https://doi.org/10.1016/j.cej.2022.139043

    Article  CAS  Google Scholar 

  66. Carranza MSS, Reyes YIA, Gonzales EC, Arcon DP, Franco FC (2021) Electrochemical and quantum mechanical investigation of various small molecule organic compounds as corrosion inhibitors in mild steel. Heliyon 7(9):e07952. https://doi.org/10.1016/j.heliyon.2021.e07952

    Article  CAS  Google Scholar 

  67. Bentiss F, Mernari B, Traisnel M, Vezin H, Lagrenée M (2011) On the relationship between corrosion inhibiting effect and molecular structure of 2,5-bis(n-pyridyl)-1,3,4-thiadiazole derivatives in acidic media: Ac impedance and DFT studies. Corros Sci 53(1):487–495. https://doi.org/10.1016/j.corsci.2010.09.063

    Article  CAS  Google Scholar 

  68. Hamani H, Daoud D, Benabid S, Douadi T (2022) Electrochemical, density functional theory (DFT) and molecular dynamic (MD) simulations studies of synthesized three news Schiff bases as corrosion inhibitors on mild steel in the acidic environment. J Indian Chem Soc 99(7):100492. https://doi.org/10.1016/j.jics.2022.100492

    Article  CAS  Google Scholar 

  69. Gadow HS, Motawea MM, Elabbasy HM (2017) Investigation of myrrh extract as a new corrosion inhibitor for α-brass in 3.5% NaCl solution polluted by 16 ppm sulfide. RSC Adv 7(47):29883–29898. https://doi.org/10.1039/C7RA04271J

    Article  CAS  Google Scholar 

  70. Guadalupe HJ, García-Ochoa E, Maldonado-Rivas PJ, Cruz J, Pandiyan T (2011) A combined electrochemical and theoretical study of N, N′-bis(benzimidazole-2yl-ethyl)-1,2-diaminoethane as a new corrosion inhibitor for carbon steel surface. J Electroanal Chem 655(2):164–172. https://doi.org/10.1016/j.jelechem.2011.01.039

    Article  CAS  Google Scholar 

  71. Anupama KK, Ramya K, Joseph A (2016) Electrochemical and computational aspects of surface interaction and corrosion inhibition of mild steel in hydrochloric acid by Phyllanthus amarus leaf extract (PAE). J Mol Liq 216:146–155. https://doi.org/10.1016/j.molliq.2016.01.019

    Article  CAS  Google Scholar 

  72. Benabbouha T, Nmila R, Siniti M, Chefira K, El Attari H, Rchid H (2020) The brown algae Cystoseira Baccata extract as a friendly corrosion inhibitor on carbon steel in acidic media. SN Appl Sci 2(4):662. https://doi.org/10.1007/s42452-020-2492-y

    Article  CAS  Google Scholar 

  73. Mahdavian M, Ashhari S (2010) Corrosion inhibition performance of 2-mercaptobenzimidazole and 2-mercaptobenzoxazole compounds for protection of mild steel in hydrochloric acid solution. Electrochim Acta 55(5):1720–1724. https://doi.org/10.1016/j.electacta.2009.10.055

    Article  CAS  Google Scholar 

  74. Rasheeda K, Alamri AH, Krishnaprasad PA, Swathi NP, Alva VDP, Aljohani TA (2022) Efficiency of a pyrimidine derivative for the corrosion inhibition of C1018 carbon steel in aqueous acidic medium: experimental and theoretical approach. Colloids Surf Physicochem Eng Asp 642:128631. https://doi.org/10.1016/j.colsurfa.2022.128631

    Article  CAS  Google Scholar 

  75. Faustin M, Maciuk A, Salvin P, Roos C, Lebrini M (2015) Corrosion inhibition of C38 steel by alkaloids extract of Geissospermum laeve in 1M hydrochloric acid: electrochemical and phytochemical studies. Corros Sci 92:287–300. https://doi.org/10.1016/j.corsci.2014.12.005

    Article  CAS  Google Scholar 

  76. Abbout S et al (2021) Gravimetric, electrochemical and theoretical study, and surface analysis of novel epoxy resin as corrosion inhibitor of carbon steel in 0.5 M H2SO4 solution. J Mol Struct 1245:131014. https://doi.org/10.1016/j.molstruc.2021.131014

    Article  CAS  Google Scholar 

  77. Ghazi I, Zefzoufi M, Siniti M, Fdil R, Elattari H (2022) Corrosion inhibition of carob pod pulp (Ceratonia siliqua L.) on carbon steel surface C38 in hydrochloric acid. J Bio-Tribo-Corros 8(1):31. https://doi.org/10.1007/s40735-022-00630-y

    Article  CAS  Google Scholar 

  78. Martinez S, Stern I (2002) Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in the low carbon steel/mimosa tannin/sulfuric acid system. Appl Surf Sci 199(1–4):83–89. https://doi.org/10.1016/S0169-4332(02)00546-9

    Article  CAS  Google Scholar 

  79. Bayol E, Gurten A, Dursun M, Kayakirilmaz K (2008) Adsorption behavior and inhibition corrosion effect of sodium carboxymethyl cellulose on mild steel in acidic medium. Acta Phys-Chim Sin 24(12):2236–2243. https://doi.org/10.1016/S1872-1508(08)60085-6

    Article  CAS  Google Scholar 

  80. Shamsa A, Barmatov E, Hughes TL, Hua Y, Neville A, Barker R (2022) Hydrolysis of imidazoline based corrosion inhibitor and effects on inhibition performance of X65 steel in CO2 saturated brine. J Pet Sci Eng 208:109235. https://doi.org/10.1016/j.petrol.2021.109235

    Article  CAS  Google Scholar 

  81. Bouknana D, Hammouti B, Messali M, Aouniti A, Sbaa M (2014) Olive pomace extract (OPE) as corrosion inhibitor for steel in HCl medium. Asian Pac J Trop Dis 4:S963–S974. https://doi.org/10.1016/S2222-1808(14)60767-2

    Article  Google Scholar 

  82. Fazal MA, Rubaiee S, Al-Zahrani A (2019) Overview of the interactions between automotive materials and biodiesel obtained from different feedstocks. Fuel Process Technol 196:106178. https://doi.org/10.1016/j.fuproc.2019.106178

    Article  CAS  Google Scholar 

  83. Sadik K, Byadi S, Hachim ME, Aboulmouhajir A (2021) Quantum and dynamic investigations of Complex iron- alkaloid-extract Cytisine derivatives of Retama monosperma (L.) Boiss. Seeds as eco-friendly inhibitors for Mild steel corrosion in 1M HCl. J Mol Struct 1244:130921. https://doi.org/10.1016/j.molstruc.2021.130921

    Article  CAS  Google Scholar 

  84. Elqars E, Oubella A, Hachim ME, Byadi S, Auhmani A, Guennoun M, Essadki A, Riahi A, Robert A, Itto MY, Nbigui T (2022) New 3-(2-methoxyphenyl)-isoxazole-carvone: synthesis, spectroscopic characterization, and prevention of carbon steel corrosion in hydrochloric acid. J Mol Liq 347:118311. https://doi.org/10.1016/j.molliq.2021.118311

    Article  CAS  Google Scholar 

  85. Izionworu VO, Byadi S, Arukalam IO et al (2022) Inhibitive mechanism of acid corrosion of cold-rolled steel by polyethylene glycol via experimental, computational and surface analytical approaches. J Bio Tribo Corros 8:14. https://doi.org/10.1007/s40735-021-00613-5

    Article  Google Scholar 

  86. Chafi M, Byadi S, Barhoumi A, Limouni W, Tizliouine A, Jama C, El Hachemi L, Omari, (2022) Study of copper removal by modified biomaterials using the response surface methodology DFT Calculation, and molecular dynamic simulation. J Mol Liq 363:119799. https://doi.org/10.1016/j.molliq.2022.119799

    Article  CAS  Google Scholar 

  87. Abdelmalek M, Barhoumi A, Byadi S et al (2021) Corrosion inhibition performance of azelaic acid dihydrazide: a molecular dynamics and Monte Carlo simulation study. J Mol Model 27:331. https://doi.org/10.1007/s00894-021-04955-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the research assistance from Electrochemistry and Mustapha Hilali (who passed away before the publication is complete) from the Applied Chemistry-Physics and Environment Team, Faculty of Sciences, Ibn Zohr University, B.P. 8106 City Dakhla, Agadir, Morocco.

Funding

There were no research Grants for this work from any funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

AE: Electrochemical experiments, wrote the main manuscript, prepared figures, and tables, HE: Supervision and correction of the manuscript. HG: supervision and correction of the manuscript. SB: DFT, and Molecular Dynamic, correction.

Corresponding authors

Correspondence to Amine El Maraghi or Said Byadi.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Maraghi, A., El Alaoui El Abdallaoui, H., Garmes, H. et al. Corrosion Inhibition by Indazole Derivatives in 1 M HCl Medium: Experimental and Computational Studies. J Bio Tribo Corros 9, 15 (2023). https://doi.org/10.1007/s40735-022-00731-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-022-00731-8

Keywords

Navigation