Skip to main content
Log in

Electrochemical, thermodynamic and theoretical study on anticorrosion performance of a novel organic corrosion inhibitor in 3.5% NaCl solution for carbon steel

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The theoretical and electrochemical performance of a novel organic corrosion inhibitor 3,4\(^{\prime }\)-dihydro-3-[2\(^{\prime }\)-mercaptothiazolidine]indol-2-one (DMI), for API 5L Grade B carbon steel in 3.5% NaCl, was evaluated by potentiodynamic polarization (Tafel), electrochemical impedance spectroscopy (EIS) and density functional theory (DFT) for quantum chemical studies. Potentiodynamic studies confirmed that DMI was a mixed organic corrosion inhibitor type which specially affects the cathodic branch. The inhibition efficiencies of reactants, DMI and acetylcysteine followed the following order at \(25{^{\circ }}\hbox {C}\) and 200 ppm: DMI (87%) > isatin (71%) > 2-thiazoline-2-thiol (62%) > acetylcysteine (54%). EIS measurements illustrated the charge transfer controlled corrosion process. The Langmuir adsorption isotherm model of DMI was adopted. Surface studies were performed using scanning electron microscopy. Activation and adsorption thermodynamic parameters of DMI were computed. The magnitude of \(\Delta G^{^{\circ }}_{\mathrm{ads}}\) and the sign of \(\Delta H^{^{\circ }}_{\mathrm{ads}}\) concluded that the adsorption occurred through chemisorption. Quantum chemical calculations of four corrosion inhibitors were used for investigating the molecular structure effect on inhibition efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shetty S and Shetty P 2007 Mater. Lett. 61 2347

    Article  CAS  Google Scholar 

  2. Ivušić F, Lahodny-Šarc O and Alar V 2013 Materialwiss. Werkst. 44 319

    Article  Google Scholar 

  3. Sastri V 1998 Corrosion inhibitors: principles and applications (New York: Wiley)

    Google Scholar 

  4. Noor E A and Al-Moubaraki A H 2008 Mater. Chem. Phys. 110 145

    Article  CAS  Google Scholar 

  5. Kadhim A, Al-Okbi A K, Jamil D M, Qussay A, Al-Amiery A A, Gaaz T S et al 2017 Results Phys. 7 4013

    Article  Google Scholar 

  6. Niu L, Zhang H, Wei F H, Wu S X, Cao X L and Liu P P 2005 Appl. Surf. Sci. 252 1634

    Article  CAS  Google Scholar 

  7. Khan G, Basirun W J, Kazi S N, Ahmed P, Magaji L, Ahmed S M et al 2017 J. Coll. Interface Sci. 502 134

    Article  CAS  Google Scholar 

  8. Qiang Y, Zhang S, Yan S, Zou X and Chen S 2017 Corros. Sci. 126 295

    Article  CAS  Google Scholar 

  9. Zheludkevich M L, Yasakau K A, Poznyak S K and Ferreira M G S 2005 Corros. Sci. 47 3368

    Article  CAS  Google Scholar 

  10. Oguzie E E, Adindu C B, Enenebeaku C K, Ogukwe C E, Chidiebere M A and Oguzie K L 2012 J. Phys. Chem. C 116 13603

    Article  CAS  Google Scholar 

  11. Ahmed Ali M A 2016 Thesis for the degree of Master of Engineering, University of Manchester School of Materials

  12. Lata S and Chaudhary R 2008 Indian J. Chem. Technol. 12 364

    Google Scholar 

  13. Ibrahim I, Kassim E S M, Jai J, Daud M and Hashim M A 2018 Int. J. Eng. Technol. 7 316

    Google Scholar 

  14. Velranil S, Jeyaprabha B and Prakash P 2014 Int. J. Innov. Sci. Eng. Technol. 1 57

    Google Scholar 

  15. Kassim E S M, Jai J, So’aib M S, Zamanhuri N A, Husin H and Hashim M A 2018 Mater. Sci. Eng. 358 12045

    Google Scholar 

  16. Ivušić F, Lahodny-Šarc O and Stojanović I 2014 Tehnicki Vjesnik 21 107

    Google Scholar 

  17. Rivera-Graul M, Casales M, Regla I, Ortega-Toledo D M, Ascencio-Gutierrez J A, Porcayo-Calderon J et al 2013 Int. J. Electrochem. Sci. 8 2491

    Google Scholar 

  18. Kassoul O, Galai M, Ballakhmima R A, Dkhireche N, Rochdi A, Ebn Touhami M et al 2015 J. Mater. Environ. Sci. 6 1147

    Google Scholar 

  19. Nwanebu C E 2015 MSc Thesis, Department of Chemical Engineering, McGill University, Montreal

  20. Pardasani R T, Pardasani P, Muktawat S and Chaturvedi V 1998 Sulfur Silicon 142 221

    Article  CAS  Google Scholar 

  21. Rocchini G 1992 Corros. Sci. 11 1759

    Article  Google Scholar 

  22. Singlit Y and Li S 1994 Specnochim. Acta 3 509

    Google Scholar 

  23. Sondhi S, Rani R, Gupta P, Agrawal S and Saxena A 2009 Mol. Divers. 13 357

    Article  CAS  Google Scholar 

  24. Pretsch E, Buhlmann P and Badertscher M 2009 Structure determination of organic compounds (Berlin Heidelberg: Springer-Verlag)

    Google Scholar 

  25. Hassan H H, Abdelghani E and Amin M A 2007 Electrochim. Acta 52 6359

    Article  CAS  Google Scholar 

  26. Ansari K R, Quraishi M A and Ebenso E 2013 Int. J. Electrochem. Sci. 8 12860

    CAS  Google Scholar 

  27. Saker S, Aliouane N, Hammache H, Chafaa S and Bouet G 2015 Ionics (Kiel) 21 2079

    Article  CAS  Google Scholar 

  28. Zhao J, Duan H and Jiang R 2015 Corros. Sci. 91 108

    Article  CAS  Google Scholar 

  29. Zhou C, Lu X, Xin Z, Liu J and Zhang Y 2014 Corros. Sci. 80 269

    Article  CAS  Google Scholar 

  30. Wu X J, Ma H Y and Chen S H 1999 J. Electrochem. Soc. 146 1847

    Article  CAS  Google Scholar 

  31. Lebrini M, Lagrenée M, Traisnel M, Gengembre L, Vezin H and Bentiss F 2007 Appl. Surf. Sci. 253 9267

    Article  CAS  Google Scholar 

  32. Macdonald J R 1987 J. Electroanal. Chem. Inter. Electrochem. 223 25

    Article  CAS  Google Scholar 

  33. Hsu C H and Mansfeld F 2001 Corros. 57 747

    Article  CAS  Google Scholar 

  34. Growcock F B and Jasinski R J 1989 J. Electrochem. Soc. 136 2310

    Article  CAS  Google Scholar 

  35. Zhang G, Chen C, Lu M, Chai C and Wu Y 2007 Mater. Chem. Phys. 105 331

    Article  CAS  Google Scholar 

  36. Faustin M, Maciuk A, Salvin P, Roos C and Lebrini M 2015 Corros. Sci. 92 287

    Article  CAS  Google Scholar 

  37. Elayyachy M, El Idrissi A and Hammouti B 2006 Corros. Sci. 48 2470

    Article  CAS  Google Scholar 

  38. Ramesh S V and Adhikari V 2007 Bull. Mater. Sci. 31 699

    Article  Google Scholar 

  39. Abd El-Rehim S S, Hassan H H and Amin M A 2001 Mater. Chem. Phys. 70 64

    Article  CAS  Google Scholar 

  40. Duan S Z and Tao Y L 1990 Interface chemistry Vol 124 (Beijing: Higher Education Press)

    Google Scholar 

  41. Branzoi V, Baibarac M and Branzoi F 2001 Sci. Bull. B Chem. Mater. Sci. 63 9

    Google Scholar 

  42. Han P, Chen C, Li W, Yu H, Xu Y, Ma L et al 2018 J. Colloid Interface Sci. 516 398

    Article  CAS  Google Scholar 

  43. Morad S and Kamal El-Dean A M 2006 Corros. Sci. 48 3398

    Article  CAS  Google Scholar 

  44. Zarrouk H, Salghi R, Assouag M, Hammouti B, Oudda H, Boukhris S et al 2013 Der. Pharm. Lett. 5 43

    Google Scholar 

  45. Samide A, Bibicu I, Rogalski M and Preda M 2004 Acta Chim. Slov. 51 127

    CAS  Google Scholar 

  46. Abdel-Gaber A M, Abd-El-Nabey B A and Saadawy M 2009 Corros. Sci. 51 1038

    Article  CAS  Google Scholar 

  47. Li W, He Q, Pei C and Hou B 2007 Electrochim. Acta 52 6386

    Article  CAS  Google Scholar 

  48. Kabanda M M, Murulana L C, Ozcan M, Karadag F, Dehri I, Obot I B et al 2012 Int. J. Electrochem. Sci. 7 5035

    CAS  Google Scholar 

  49. Sastri V S and Perumareddi J R 1997 Corros. Sci. 53 617

    Article  CAS  Google Scholar 

  50. Gece G and Bilgic S 2010 Corros. Sci. 52 3435

    Article  CAS  Google Scholar 

  51. Awad M K 2004 J. Electroanal. Chem. 567 219

    Article  CAS  Google Scholar 

  52. Ebenso E, Isabirye D and Eddy N 2010 Int. J. Molecul. Sci. 11 2473

    Article  CAS  Google Scholar 

  53. Gece G and Bilgic S 2009 Corros. Sci. 51 1876

    Article  CAS  Google Scholar 

  54. Hamid S M and Sherrington D C 1984 J. Brit. Polym. 16 245

    Article  Google Scholar 

  55. ElBelghitia M, Karzazi Y, Dafali A, Hammouti B, Bentiss F, Obot I B et al 2016 J. Mol. Liq. 218 281

    Article  Google Scholar 

  56. Kikuchi O 1987 Quant. Struct. Act. Relat. 6 179

    Article  CAS  Google Scholar 

  57. Scendo M 2007 Corros. Sci. 49 373

    Article  CAS  Google Scholar 

  58. Li W, Zhao X, Liu F and Hou B 2008 Corros. Sci. 50 3261

    Article  CAS  Google Scholar 

  59. Daoud D, Douadi T, Hamani H, Al-Noaimi M and Chafaa S 2015 Corros. Sci. 94 21

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Javadpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoseinzadeh, A.R., Javadpour, S. Electrochemical, thermodynamic and theoretical study on anticorrosion performance of a novel organic corrosion inhibitor in 3.5% NaCl solution for carbon steel. Bull Mater Sci 42, 188 (2019). https://doi.org/10.1007/s12034-019-1889-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1889-y

Keywords

Navigation