Skip to main content

Advertisement

Log in

Localised Corrosion of API 5L X65 Carbon Steel in Marine Environments: The Role of Sulfate-Reducing Bacteria (SRB)

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

This research investigates the behaviour of microbiologically influenced corrosion (MIC) of sulfate-reducing bacteria (SRB) on API 5L X65 carbon steel in the presence of CO2 gas. The weight loss test, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarisation were implemented to determine the corrosion behaviours. Biofilms, corrosion products and pit penetration rate were characterised by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and infinite focus microscope (IFM). Findings from weight loss confirmed that specimens in the absence of SRB promote uniform corrosion with a higher corrosion rate value of 1.05 mm per yr compared to the pit penetration rate of 0.12 mm per yr. The IFM analysis shows that samples with the SRB presence promote localised corrosion due to the higher pit penetration rate value of 0.81 mm per yr than the uniform corrosion rate of 0.57 mm per yr. Furthermore, EIS measurements confirmed that corrosion products and biofilm formations affect the corrosion process. The surface analysis proved the presence of sulfur on metal specimens exposed to SRB in CO2 environments; this indication supports the formation of the FeS layer. Finally, the XRD test affirmed the formation of Fe3C and FeS in samples exposed to the SRB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Igi S, Sakimoto T, Endo S (2011) Effect of internal pressure on tensile strain capacity of X80 pipeline. Procedia Eng 10:1451–1456. https://doi.org/10.1016/j.proeng.2011.04.241

    Article  CAS  Google Scholar 

  2. Al-Jaroudi SS, Ul-Hamid A, Al-Gahtani MM (2011) Failure of crude oil pipeline due to microbiologically induced corrosion. Corros Eng Sci Technol 46:568–579. https://doi.org/10.1179/147842210X12695149033819

    Article  CAS  Google Scholar 

  3. Okonkwo P, Mohamed AMA (2014) Erosion-corrosion in oil and gas industry: a review. Int J Metall Mater Sci Eng 4:7–28

    Google Scholar 

  4. Malaysian Gas Association (2017) Malaysia: Natural Gas Industry Annual Review 2017

  5. Yulia F, Marsya S, Bobby Y et al (2020) Design and preparation of succinic acid-based metal-organic frameworks for CO2 adsorption technology. Evergreen 7:549–554. https://doi.org/10.5109/4150475

    Article  CAS  Google Scholar 

  6. Kim S, Il LY, Lee D et al (2021) Effects of flue gas recirculation on energy, exergy, environment, and economics in oxy-coal circulating fluidized-bed power plants with CO2 capture. Int J Energy Res 45:5852–5865. https://doi.org/10.1002/er.6205

    Article  CAS  Google Scholar 

  7. Satyanarayana KG, Mariano AB, Vargas JVC (2011) A review on microalgae, a versatile source for sustainable energy and materials. Int J Energy Res 35:291–311. https://doi.org/10.1002/er.1695

    Article  Google Scholar 

  8. Eduok U, Khaled M, Khalil A et al (2016) Probing the corrosion inhibiting role of a thermophilic Bacillus licheniformis biofilm on steel in a saline axenic culture. RSC Adv 6:18246–18256. https://doi.org/10.1039/c5ra25381k

    Article  CAS  Google Scholar 

  9. Shah M, Abdul Manap NR, MawardiAyob MT et al (2021) Effect of pH2S influence on austenitic stainless steel 316L corrosion behaviours in chloride environment/Kesan pengaruh tekanan separa gas H2S terhadap tingkah laku kakisan keluli tahan karat 316L di persekitaran klorida. Malaysian J Civ Eng. https://doi.org/10.11113/mjce.v33.16697

  10. Maruthamuthu S, Kumar BD, Ramachandran S et al (2011) Microbial corrosion in petroleum product transporting pipelines. Ind Eng Chem Res 50:8006–8015. https://doi.org/10.1021/ie1023707

    Article  CAS  Google Scholar 

  11. De Paula MS, Gonçalves MMM, Rola MAC et al (2016) Carbon steel corrosion induced by sulphate-reducing bacteria in artificial seawater: electrochemical and morphological characterizations. Rev Mater 21:987–995. https://doi.org/10.1590/S1517-707620160004.0091

    Article  Google Scholar 

  12. Idris MN, Mahat NA, Othman NK, Shahrani FK (2017) Anaerobic bacteria treatment by benzyl dimethyl (2-hidroxyethyl) ammonium chloride for carbon steel pipeline system. J Built Environ Technol Eng 2:12–17

    Google Scholar 

  13. AlAbbas FM, Bhola SM, Spear JR et al (2013) The shielding effect of wild type iron reducing bacterial flora on the corrosion of linepipe steel. Eng Fail Anal 33:222–235. https://doi.org/10.1016/j.engfailanal.2013.05.020

    Article  CAS  Google Scholar 

  14. Pessu F, Barker R, Neville A (2017) Pitting and uniform corrosion of X65 carbon steel in sour corrosion environments: the influence of CO2, H2S, and temperature. Corrosion. https://doi.org/10.5006/2454

    Article  Google Scholar 

  15. Liu H, Cheng YF (2018) Mechanistic aspects of microbially influenced corrosion of X52 pipeline steel in a thin layer of soil solution containing sulphate-reducing bacteria under various gassing conditions. Corros Sci 133:178–189. https://doi.org/10.1016/j.corsci.2018.01.029

    Article  CAS  Google Scholar 

  16. Liu H, Gu T, Zhang G et al (2018) Corrosion of X80 pipeline steel under sulfate-reducing bacterium biofilms in simulated CO2-saturated oilfield produced water with carbon source starvation. Corros Sci 136:47–59. https://doi.org/10.1016/j.corsci.2018.02.038

    Article  CAS  Google Scholar 

  17. Liu H, Meng G, Li W et al (2019) Microbiologically influenced corrosion of carbon steel beneath a deposit in CO2-saturated formation water containing Desulfotomaculum nigrificans. Front Microbiol 10:1–13. https://doi.org/10.3389/fmicb.2019.01298

    Article  Google Scholar 

  18. Hajar HM, Zulkifli F, Mohd Sabri MG, Wan Nik WB (2016) Protection against corrosion of aluminum alloy in marine environment by Lawsonia inermis. Int J Corros 2016:4891803. https://doi.org/10.1155/2016/4891803

    Article  CAS  Google Scholar 

  19. Mohd Sukarnoor NI, Ferry M, wan nik wan sani, Saidin J (2015) Evaluation of tannin from Rhizophora apiculata as natural antifouling agents in epoxy paint for marine application. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2014.12.012

  20. Zinkevich V, Bogdarina I, Kang H et al (1996) Characterisation of exopolymers produced by different isolates of marine sulphate-reducing bacteria. Int Biodeterior Biodegrad 37:163–172. https://doi.org/10.1016/s0964-8305(96)00025-x

    Article  CAS  Google Scholar 

  21. Al Shehadat S, Gorduysus MO, Hamid SSA et al (2018) Optimization of scanning electron microscope technique for amniotic membrane investigation: a preliminary study. Eur J Dent 12:574–578. https://doi.org/10.4103/ejd.ejd_401_17

    Article  Google Scholar 

  22. Fan MM, Liu HF, Dong ZH (2013) Microbiologically influenced corrosion of X60 carbon steel in CO2-saturated oilfield flooding water. Mater Corros 64:242–246. https://doi.org/10.1002/maco.201106154

    Article  CAS  Google Scholar 

  23. Abdullah A, Yahaya N, Norhazilan MN, Rasol RM (2014) Microbial corrosion of API 5L X-70 carbon steel by ATCC 7757 and consortium of sulfate-reducing bacteria. J Chem. https://doi.org/10.1155/2014/130345

    Article  Google Scholar 

  24. Mahat NA, Othman NK, Sahrani FK, Idris MN (2015) Inhibition of consortium sulfate reducing bacteria from crude oil for carbon steel protection. Sains Malaysiana 44:1587–1591

    CAS  Google Scholar 

  25. Pessu F, Barker R (2017) Pitting and uniform corrosion of X65 carbon steel in sour corrosion environments: the influence of CO2, H2S and temperature. Corrosion 73:451–604. https://doi.org/10.5006/2454

    Article  CAS  Google Scholar 

  26. Pessu F, Hua Y, Barker R, Neville A (2018) A study of the pitting and uniform corrosion characteristics of X65 carbon steel in different H2S-CO2-containing environments. Corrosion 74:886–902. https://doi.org/10.5006/2537

    Article  CAS  Google Scholar 

  27. Solmaz R (2017) Gold-supported activated NiZn coatings: hydrogen evolution and corrosion studies. Int J Energy Res 41:1452–1459. https://doi.org/10.1002/er.3724

    Article  CAS  Google Scholar 

  28. Almeida PF, Carvalho EB, Souza ER et al (2006) Overview of sulfate-reducing bacteria and strategies to control biosulfide generation in oil waters. Mod Biotechnol Med Chem Ind 661:1–15

    Google Scholar 

  29. Al-Khafaji AAS(2017) Diversity of bacteria in crude oils and determination of corrosion potential for microbiologically influenced corrosion on carbon steel. npj Mater Degrad 6: Article number: 35

  30. Idris MN, Daud AR, Mahat N et al (2016) Perlindungan biokakisan keluli karbon akibat bakteria penurun sulfat yang dipencil daripada minyak mentah tropika. Sains Malaysiana 45:1835–1841. https://doi.org/10.17576/jsm-2016-4512-07

  31. Castaneda H, Benetton XD (2008) SRB-biofilm influence in active corrosion sites formed at the steel–electrolyte interface when exposed to artificial seawater conditions. Corros Sci 50:1169–1183. https://doi.org/10.1016/j.corsci.2007.11.032

    Article  CAS  Google Scholar 

  32. Li DP, Zhang L, Yang JW et al (2014) Effect of H2S concentration on the corrosion behavior of pipeline steel under the coexistence of H2S and CO2. Int J Miner Metall Mater 21:388–394. https://doi.org/10.1007/s12613-014-0920-y

    Article  CAS  Google Scholar 

  33. Jia R, Yang D, Xu D, Gu T (2017) Anaerobic corrosion of 304 stainless steel caused by the Pseudomonas aeruginosa biofilm. Front Microbiol 8:1–9. https://doi.org/10.3389/fmicb.2017.02335

    Article  Google Scholar 

  34. Wu C-Y, Liang Z-C, Lu C-P, Wu S-H (2008) Effect of Carbon and nitrogen sources on the production and carbohydrate composition of exopolysaccharide by submerged culture of pleurotus. J Food Drug Anal 16:61–67. https://doi.org/10.38212/2224-6614.2364

    Article  CAS  Google Scholar 

  35. Vaira Vignesh R, Padmanaban R, Govindaraju M (2020) Study on the corrosion and wear characteristics of magnesium alloy AZ91D in simulated body fluids. Bull Mater Sci. https://doi.org/10.1007/s12034-019-1973-3

    Article  Google Scholar 

  36. Kermani MB, Morshed A (2003) Carbon dioxide corrosion in oil and gas production—a compendium. Corrosion 59:659–683

    Article  CAS  Google Scholar 

  37. Li S, Zeng Z, Harris MA et al (2019) CO2 corrosion of low carbon steel under the joint effects of time-temperature-salt concentration. Front Mater 6:1–17. https://doi.org/10.3389/fmats.2019.00010

    Article  Google Scholar 

  38. Enning D, Garrelfs J (2014) Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 80:1226–1236. https://doi.org/10.1128/AEM.02848-13

    Article  CAS  Google Scholar 

  39. Sahrani FK, Aziz M, Ibrahim Z, Yahya A (2008) Open circuit potential study of stainless steel in environment containing marine sulphate-reducing bacteria. Sains Malaysiana 37:359–364

    CAS  Google Scholar 

  40. Videla HA (1996) Corrosion inhibition in the presence of microbial corrosion. In: NACE—International corrosion conference series, March 1996

  41. Liu H, Fu C, Gu T et al (2015) Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water. Corros Sci 100:484–495. https://doi.org/10.1016/j.corsci.2015.08.023

    Article  CAS  Google Scholar 

  42. Lan G, Chen C, Liu Y et al (2017) Corrosion of carbon steel induced by a microbial-enhanced oil recovery bacterium: Pseudomonas sp. SWP-4. RSC Adv 7:5583–5594. https://doi.org/10.1039/c6ra25154d

    Article  CAS  Google Scholar 

  43. Yadav AP, Nishikata A, Tsuru T (2004) Electrochemical impedance study on galvanized steel corrosion under cyclic wet-dry conditions-influence of time of wetness. Corros Sci 46:169–181. https://doi.org/10.1016/S0010-938X(03)00130-6

    Article  CAS  Google Scholar 

  44. Liu H, Gu T, Zhang G et al (2016) Corrosion inhibition of carbon steel in CO2-containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors. Corros Sci 105:149–160. https://doi.org/10.1016/j.corsci.2016.01.012

    Article  CAS  Google Scholar 

  45. Yin ZF, Zhao WZ, Lai WY, Zhao XH (2009) Electrochemical behaviour of Ni-base alloys exposed under oil/gas field environments. Corros Sci 51:1702–1706. https://doi.org/10.1016/j.corsci.2009.04.019

    Article  CAS  Google Scholar 

  46. Zheng Y, Luo B, He C et al (2019) Corrosion behaviour of the Al-2.1–Mg-1.8–Si alloy in chloride solution. Bull Mater Sci 42:2–7. https://doi.org/10.1007/s12034-019-1923-0

    Article  CAS  Google Scholar 

  47. Raghuram HS, Pradeep S, Dash S et al (2016) Chitosan-encapsulated ZnS: M (M: Fe3+ or Mn2+) quantum dots for fluorescent labelling of sulphate-reducing bacteria. Bull Mater Sci 39:405–413. https://doi.org/10.1007/s12034-016-1178-y

    Article  CAS  Google Scholar 

  48. Davydov AD (2001) Role of redox properties of biofilms in corrosion processes. Electrochim Acta 46:3841–3849. https://doi.org/10.1016/S0013-4686(01)00671-5

    Article  Google Scholar 

  49. Zhang GA, Cheng YF (2009) Corrosion of X65 steel in CO2-saturated oilfield formation water in the absence and presence of acetic acid. Corros Sci 51:1589–1595. https://doi.org/10.1016/j.corsci.2009.04.004

    Article  CAS  Google Scholar 

  50. Alamri AH (2020) Localized corrosion and mitigation approach of steel materials used in oil and gas pipelines—an overview. Eng Fail Anal 116:104735. https://doi.org/10.1016/j.engfailanal.2020.104735

    Article  CAS  Google Scholar 

  51. Li H, Zhou E, Zhang D et al (2016) Microbiologically influenced corrosion of 2707 hyper-duplex stainless steel by marine pseudomonas aeruginosa biofilm. Sci Rep 6:1–12. https://doi.org/10.1038/srep20190

    Article  CAS  Google Scholar 

  52. Dong ZH, Shi W, Ruan HM, Zhang GA (2011) Heterogeneous corrosion of mild steel under SRB-biofilm characterised by electrochemical mapping technique. Corros Sci 53:2978–2987. https://doi.org/10.1016/j.corsci.2011.05.041

    Article  CAS  Google Scholar 

  53. Wu T, Xu J, Yan M et al (2014) Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil solution. Corros Sci 83:38–47. https://doi.org/10.1016/j.corsci.2014.01.017

    Article  CAS  Google Scholar 

  54. Xu D, Gu T (2014) Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm. Int Biodeterior Biodegrad 91:74–81. https://doi.org/10.1016/j.ibiod.2014.03.014

    Article  CAS  Google Scholar 

  55. Beese-Vasbender PF, Nayak S, Erbe A et al (2015) Electrochemical characterization of direct electron uptake in electrical microbially influenced corrosion of iron by the lithoautotrophic SRB Desulfopila corrodens strain IS4. Electrochim Acta 167:321–329. https://doi.org/10.1016/j.electacta.2015.03.184

    Article  CAS  Google Scholar 

  56. Venzlaff H, Enning D, Srinivasan J et al (2013) Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corros Sci 66:88–96. https://doi.org/10.1016/j.corsci.2012.09.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank DNVGL@UKM lab for their experimental facilities to conduct this research project and the Centre of Research and Instrumentation Management (i-CRIM), Universiti Kebangsaan Malaysia for FESEM, EDS and XRD testing.

Funding

We are grateful for the financial support of the Ministry of Education Malaysia (FRGS/1/2020/TK0/UKM/02/35) and Universiti Kebangsaan Malaysia (UKM) (GUP-2019-040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norinsan Kamil Othman.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zulkafli, R., Othman, N.K. & Yaakob, N. Localised Corrosion of API 5L X65 Carbon Steel in Marine Environments: The Role of Sulfate-Reducing Bacteria (SRB). J Bio Tribo Corros 9, 12 (2023). https://doi.org/10.1007/s40735-022-00730-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-022-00730-9

Keywords

Navigation