Skip to main content
Log in

Study on the corrosion and wear characteristics of magnesium alloy AZ91D in simulated body fluids

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Bioimplants made of metallic materials induce a stress-shielding effect and delayed osteoblast activity during in-vivo experiments. Bioimplants also suffer corrosion, wear and combined effect of corrosion–wear during their service time. Bioimplants made of magnesium alloys result in a negligible stress shielding effect, owing to their similarity with bone’s elastic modulus. However, the soft matrix of the magnesium alloy is susceptible to high-wear rates. In this study, magnesium alloy AZ91D is subjected to the corrosion test (immersion and electrochemical), adhesive wear and simultaneous corrosion–wear test to test the significance of the body fluid in the corrosion–wear rate of the bioimplants. The surface morphology, elemental composition and phase composition of the specimens are characterized using field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction analytic techniques. The results indicate that the simulated-body fluid has a significant effect on the corrosion rate and corrosion–wear rate of the specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Anon 2014 Essential readings in magnesium technology (United States: Wiley)

    Google Scholar 

  2. Niinomi M 2010 Metals for biomedical devices (United Kingdom: Elsevier)

    Book  Google Scholar 

  3. Westengen H and Rashed H M M A 2016 in Materials science and materials engineering (Netherlands: Elsevier) p 1

  4. Witte F and Eliezer A 2012 in Degradation of implant materials Noam Eliaz (ed) (New York: Springer) p 93

  5. Glasdam S-M, Glasdam S and Peters G H 2016 in Advances in clinical chemistry Gregory S Makowski (ed) (Netherlands: Elsevier) p 169

  6. Ambrose C G and Clanton T O 2004 Ann. Biomed. Eng.32 171

    Article  Google Scholar 

  7. Manivasagam G, Dhinasekaran D and Rajamanickam A 2010 Recent Patents Corros. Sci.2 40

    Article  CAS  Google Scholar 

  8. Agarwal S, Curtin J, Duffy B and Jaiswal S 2016 Mater. Sci. Eng. C68 948

    Article  CAS  Google Scholar 

  9. Gu X-N, Li S-S, Li X-M and Fan Y-B 2014 Front. Mater. Sci. China8 200

    Article  Google Scholar 

  10. Hornberger H 2012 Acta Biomater.8 2442

    Article  CAS  Google Scholar 

  11. Luthringer B J C, Feyerabend F and Römer R W 2014 Magnesium Res.27 142

    Article  CAS  Google Scholar 

  12. Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A and Berzina-Cimdina L 2017 J. Funct. Biomater.8 44

    Article  Google Scholar 

  13. Staiger M P 2006 Biomaterials27 1728

    Article  CAS  Google Scholar 

  14. Vaira Vignesh R and Padmanaban R 2018 Advances in mathematical methods and high performance computing (Switzerland: Springer) p 471

  15. Vaira Vignesh R, Padmanaban R, Govindaraju M and Suganya Priyadharshini G 2019 Mater. Res. Express6 1

  16. Nishio T, Kobayashi K, Matsumoto A and Ozaki K 2002 Mater. Trans.43 2110

    Article  CAS  Google Scholar 

  17. Mabuchi M, Kobata M, Chino Y and Iwasaki H 2003 Mater. Trans.44 436

    Article  CAS  Google Scholar 

  18. Shanthi M, Lim C Y H and Lu L 2007 Tribol. Int.40 335

    Article  CAS  Google Scholar 

  19. Zafari A, Ghasemi H M and Mahmudi R 2012 Wear292–293 33

    Article  Google Scholar 

  20. Zafari A, Ghasemi H and Mahmudi R 2014 Mater. Des.54 544

    Article  CAS  Google Scholar 

  21. Chen H and Alpas A T 2000 Wear246 106

    Article  CAS  Google Scholar 

  22. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth C J et al 2005 Biomaterials26 3557

    Article  CAS  Google Scholar 

  23. Choudhary L, Szmerling J, Goldwasser R and Raman R K S 2011 Procedia Eng.10 518

    Article  CAS  Google Scholar 

  24. Xue D, Yun Y, Tan Z, Dong Z and Schulz M J 2012 J. Mater. Sci. Technol.28 261

    Article  CAS  Google Scholar 

  25. Walter R, Kannan M B, He Y and Sandham A 2013 Appl. Surf. Sci.279 343

    Article  CAS  Google Scholar 

  26. Tahmasebifar A, Kayhan S M, Evis Z, Tezcaner A, Çinici H and Koç M 2016 J. Alloys Compd.687 906

    Article  CAS  Google Scholar 

  27. Wen Z, Duan S, Dai C, Yang F and Zhang F 2014 Int. J. Electrochem. Sci.9 7846

    Google Scholar 

  28. Padmanaban R, Vignesh R V, Arivarasu M and Sundar A A 2016 ARPN J. Eng. Appl. Sci.11 6030

    CAS  Google Scholar 

  29. Vaira Vignesh R and Ramasamy P 2017 Trans. Indian Inst. Met.70 2575

    Article  Google Scholar 

  30. Buhmann M D 2003 Radial basis functions: theory and implementations (Cambridge, England: Cambridge University Press)

    Book  Google Scholar 

  31. Chai F, Zhang D, Li Y and Zhang W 2013 Mater. Sci. Eng. A568 40

    Article  CAS  Google Scholar 

  32. Choudhary L and Singh Raman R K 2013 Eng. Fract. Mech.103 94

    Article  Google Scholar 

  33. Cavaliere P and De Marco P P 2007 J. Mater. Process. Technol.184 77

    Article  CAS  Google Scholar 

  34. Vaira Vignesh R, Padmanaban R and Govindaraju M 2019 Surf. Topogr.: Metrol. Prop.7 1

  35. Khanra A K, Jung H C, Yu S H, Hong K S and Shin K S 2010 Bull. Mater. Sci.33 43

    Article  CAS  Google Scholar 

  36. Vaira Vignesh R, Padmanaban R and Govindaraju M 2019 Silicon (Published Online). https://doi.org/10.1007/s12633-019-00194-6

Download references

Acknowledgements

The authors are grateful to Amrita Vishwa Vidyapeetham, India for their financial support to carry out this investigation through an internally funded research project no. AMRITA/IFRP-20/2016–2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Padmanaban.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaira Vignesh, R., Padmanaban, R. & Govindaraju, M. Study on the corrosion and wear characteristics of magnesium alloy AZ91D in simulated body fluids. Bull Mater Sci 43, 8 (2020). https://doi.org/10.1007/s12034-019-1973-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1973-3

Keywords

Navigation