Skip to main content

Advertisement

Log in

Microbial Corrosion in Titanium-Based Dental Implants: How Tiny Bacteria Can Create a Big Problem?

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

A Correction to this article was published on 30 September 2021

This article has been updated

Abstract

Microbiologically induced corrosion plays a key role in implanted materials survival, especially those exposed to the oral environment. Despite considerable progress in this field, a consensus is still missing due to contradictory findings regarding the role of oral biofilms in the electrochemical behavior of titanium (Ti) implant surfaces. This scoping review comprehensively reviews and discusses the current evidence and new perspectives on microbial corrosion. The main focus is understanding oral biofilm formation and its synergistic effect under the corrosion/tribocorrosion phenomenon. We critically revisited the literature to refine key concepts and mechanisms involved in polymicrobial biofilm formation on implant devices, microbial corrosion phenomenon, and its consequence for surrounding tissues. To summarize what is currently known about this topic, we have conducted a scoping review. Data of eligible in vitro studies suggest that oral biofilm and bacterial metabolites products can affect negatively the electrochemical behavior of Ti material and promote implant surface deterioration. Relevant experimental strategies to practically approach the field of microbial corrosion mechanisms are outlined. Finally, new approaches to enhance biomaterial development should consider improved corrosion resistance to promote higher implant survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data sources are PubMed (MEDLINE), Scopus, Web of Science, EMBASE, Google Scholar, and the System for Information on Grey Literature in Europe (SIGLE) through the OpenGrey.

Change history

References

  1. Albrektsson T, Dahl E, Enbom L, Engevall S, Engquist B, Eriksson AR, Feldmann G, Freiberg N, Glantz PO, Kjellman O (1988) Osseointegrated oral implants. A Swedish multicenter study of 8139 consecutively inserted Nobelpharma implants. J Periodontol 5:287–296. https://doi.org/10.1902/jop.1988.59.5.287

    Article  Google Scholar 

  2. Moraschini V, Poubel LA, Ferreira VF, Barboza E (2015) Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: a systematic review. Int J Oral Maxillofac Surg 3:377–388. https://doi.org/10.1016/j.ijom.2014.10.023

    Article  Google Scholar 

  3. Adell R, Lekholm U, Rockler B, Brånemark PI (1981) A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 6:387–416. https://doi.org/10.1016/s0300-9785(81)80077-4

    Article  Google Scholar 

  4. Barão VA, Mathew MT, Assunção WG, Yuan JC, Wimmer MA, Sukotjo C (2012) Stability of cp-Ti and Ti–6Al–4V alloy for dental implants as a function of saliva pH—an electrochemical study. Clin Oral Implants Res. https://doi.org/10.1111/j.1600-0501.2011.02265.x

    Article  Google Scholar 

  5. Costa RC, Souza J, Cordeiro JM, Bertolini M, de Avila ED, Landers R, Rangel EC, Fortulan CA, Retamal-Valdes B, da Cruz NC, Feres M, Barão V (2020) Synthesis of bioactive glass-based coating by plasma electrolytic oxidation: untangling a new deposition pathway toward titanium implant surfaces. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2020.06.102

    Article  Google Scholar 

  6. Villanueva J, Trino L, Thomas J, Bijukumar D, Royhman D, Stack M, Mathew M (2017) Corrosion, tribology, and tribocorrosion research in biomedical implants: progressive trend in the published literature. J Bio Tribo Corros 1:1–8. https://doi.org/10.1007/s40735-016-0060-1

    Article  Google Scholar 

  7. Díaz I, Pacha-Olivenza MÁ, Tejero R, Anitua E, González-Martín ML, Escudero ML, García-Alonso MC (2018) Corrosion behavior of surface modifications on titanium dental implant. In situ bacteria monitoring by electrochemical techniques. J Biomed Mater Res B 3:997–1009. https://doi.org/10.1002/jbm.b.33906

    Article  CAS  Google Scholar 

  8. Dini C, Costa RC, Sukotjo C, Takoudis CG, Mathew MT, Barão VAR (2020) Progression of bio–tribocorrosion in implant dentistry. Front Mech Eng. https://doi.org/10.3389/fmech.2020.00001

    Article  Google Scholar 

  9. Berglundh T, Armitage G, Araujo MG, Avila-Ortiz G, Blanco J, Camargo PM, Chen S, Cochran D, Derks J, Figuero E, Hämmerle C, Heitz-Mayfield L, Huynh-Ba G, Iacono V, Koo KT, Lambert F, McCauley L, Quirynen M, Renvert S, Salvi GE, Zitzmann N (2018) Peri-implant diseases and conditions: Consensus Report of Workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-implant Diseases and Conditions. J Clin Periodontol 20:286-S291. https://doi.org/10.1111/jcpe.12957

    Article  Google Scholar 

  10. Daubert DM, Weinstein BF (2000) (2019) Biofilm as a risk factor in implant treatment. Periodontology 1:29–40. https://doi.org/10.1111/prd.12280

    Article  Google Scholar 

  11. Souza J, Bertolini MM, Costa RC, Nagay BE, Dongari-Bagtzoglou A, Barão V (2021) Targeting implant-associated infections: titanium surface loaded with antimicrobial. iScience 1:102008. https://doi.org/10.1016/j.isci.2020.102008

    Article  CAS  Google Scholar 

  12. Souza JCM, Henriques M, Oliveira R, Teughels W, Celis JP, Rocha LA (2010) Do oral biofilms influence the wear and corrosion behavior of titanium? Biofouling 4:471–478. https://doi.org/10.1080/08927011003767985

    Article  CAS  Google Scholar 

  13. Fukushima A, Mayanagi G, Nakajo K, Sasaki K, Takahashi N (2014) Microbiologically induced corrosive properties of the titanium surface. J Dent Res 5:525–529. https://doi.org/10.1177/0022034514524782

    Article  CAS  Google Scholar 

  14. Rodrigues DC, Sridhar S, Gindri IM, Siddiqui DA, Pilar V, Wilsom TG Jr, Chung K, Wadhwani C (2016) Spectroscopic and microscopic investigation of the effects of bacteria on dental implant surfaces. RSC Adv 54:48283–48293. https://doi.org/10.1039/c6ra07760a

    Article  Google Scholar 

  15. Siddiqui DA, Guida L, Sridhar S, Valderrama P, Wilson TG Jr, Rodrigues DC (2019) Evaluation of oral microbial corrosion on the surface degradation of dental implant materials. J Periodontol 3:72–81. https://doi.org/10.1002/JPER.18-0110

    Article  CAS  Google Scholar 

  16. Suárez-López Del Amo F, Garaicoa-Pazmiño C, Fretwurst T, Castilho RM, Squarize CH (2018) Dental implants-associated release of titanium particles: a systematic review. Clin Oral Implants Res 11:1085–1100. https://doi.org/10.1111/clr.13372

    Article  Google Scholar 

  17. Souza J, Costa Oliveira BE, Bertolini M, Lima CV, Retamal-Valdes B, de Faveri M, Feres M, Barão V (2020) Titanium particles and ions favor dysbiosis in oral biofilms. J Periodontal Res 2:258–266. https://doi.org/10.1111/jre.12711

    Article  CAS  Google Scholar 

  18. He J, Zhou W, Zhou X, Zhong X, Zhang X, Wan P, Zhu B, Chen W (2008) The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation. J Mater Sci Mater Med. https://doi.org/10.1007/s10856-008-3505-3

    Article  Google Scholar 

  19. Pettersson M, Pettersson J, Molin Thorén M, Johansson A (2017) Release of titanium after insertion of dental implants with different surface characteristics—an ex vivo animal study. Acta biomater odontol Scand 1:63–73. https://doi.org/10.1080/23337931.2017.1399270

    Article  CAS  Google Scholar 

  20. Xu L, Yu X, Chen W, Zhang S, Qiu J (2020) Biocorrosion of pure and SLA titanium surfaces in the presence of Porphyromonas gingivalis and its effects on osteoblast behavior. RSC Adv 14:8198–8206. https://doi.org/10.1039/d0ra00154f

    Article  CAS  Google Scholar 

  21. Souza J, Beline T, Matos AO, Costa Oliveira BE, Ricomini-Filho AP, Barão V (2018) Electrochemical behavior of titanium exposed to a biofilm supplemented with different sucrose concentrations. J Prosthet Dent 2:290–298. https://doi.org/10.1016/j.prosdent.2017.10.012

    Article  CAS  Google Scholar 

  22. Mombelli A, Décaillet F (2011) The characteristics of biofilms in peri-implant disease. J Clin Periodontol 11:203–213. https://doi.org/10.1111/j.1600-051X.2010.01666.x

    Article  Google Scholar 

  23. Zuo R (2007) Biofilms: strategies for metal corrosion inhibition employing microorganisms. Appl Microbiol Biotechnol 6:1245–1253. https://doi.org/10.1007/s00253-007-1130-6

    Article  CAS  Google Scholar 

  24. Rodrigues DC, Valderrama P, Wilson TG, Palmer K, Thomas A, Sridhar S, Adapalli A, Burbano M, Wadhwani C (2013) Titanium corrosion mechanisms in the oral environment: a retrieval study. Materials (Basel Switz) 11:5258–5274. https://doi.org/10.3390/ma6115258

    Article  CAS  Google Scholar 

  25. Arciola CR, Campoccia D, Montanaro L (2018) Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol 7:397–409. https://doi.org/10.1038/s41579-018-0019-y

    Article  CAS  Google Scholar 

  26. Rabe M, Verdes D, Seeger S (2011) Understanding protein adsorption phenomena at solid surfaces. Adv Colloid Interface Sci 1:87–106. https://doi.org/10.1016/j.cis.2010.12.007

    Article  CAS  Google Scholar 

  27. Dodo CG, Senna PM, Custodio W, Paes Leme AF, Del Bel Cury AA (2013) Proteome analysis of the plasma protein layer adsorbed to a rough titanium surface. Biofouling. https://doi.org/10.1002/jbm.a.30754

    Article  Google Scholar 

  28. An YH, Dickinson RB, Doyle RJ (2000) Mechanisms of bacterial adhesion and pathogenesis of implant and tissue infections. In: An YH, Friedman RJ (eds) Handbook of bacterial adhesion: principles, methods, and applications. Humana Press, Totowa, pp 1–27. https://doi.org/10.1385/1-59259-224-4:1

    Chapter  Google Scholar 

  29. Souza J, Henriques M, Teughels W, Ponthiaux P, Celis J, Rocha LA (2015) Wear and corrosion interactions on titanium in oral environment: literature review. J Bio Tribo Corros 2:1–13. https://doi.org/10.1007/s40735-015-0013-0

    Article  CAS  Google Scholar 

  30. Souza J, Bertolini M, Costa RC, Lima CV, Barão V (2020) Proteomic profile of the saliva and plasma protein layer adsorbed on Ti–Zr alloy: the effect of sandblasted and acid-etched surface treatment. Biofouling 4:428–441. https://doi.org/10.1080/08927014.2020.1769613

    Article  CAS  Google Scholar 

  31. Celli J, Gregor B, Turner B, Afdhal NH, Bansil R, Erramilli S (2005) Viscoelastic properties and dynamics of porcine gastric mucin. Biomacromolecules 3:1329–1333. https://doi.org/10.1021/bm0493990

    Article  CAS  Google Scholar 

  32. Branco AC, Moreira V, Reis JA, Colaço R, Figueiredo-Pina CG, Serro AP (2019) Influence of contact configuration and lubricating conditions on the microtriboactivity of the zirconia–Ti6Al4V pair used in dental applications. J Mech Behav Biomed Mater. https://doi.org/10.1016/j.jmbbm.2018.12.009

    Article  Google Scholar 

  33. Serro AP, Gispert MP, Martins MC, Brogueira P, Colaço R, Saramago B (2006) Adsorption of albumin on prosthetic materials: implication for tribological behavior. J Biomed Mater Res A 78:581–589. https://doi.org/10.1002/jbm.a.30754

    Article  CAS  Google Scholar 

  34. Nakanishi K, Sakiyama T, Imamura K (2001) On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J Biosci Bioeng 3:233–244. https://doi.org/10.1263/jbb.91.233

    Article  Google Scholar 

  35. Bowen WH, Burne RA, Wu H, Koo H (2018) Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol 3:229–242. https://doi.org/10.1016/j.tim.2017.09.008

    Article  CAS  Google Scholar 

  36. Belibasakis GN, Manoil D (2021) Microbial community-driven etiopathogenesis of peri-implantitis. J Dent Res 1:21–28. https://doi.org/10.1177/0022034520949851

    Article  CAS  Google Scholar 

  37. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 9:563–575. https://doi.org/10.1038/nrmicro.2016.94

    Article  CAS  Google Scholar 

  38. Karygianni L, Ren Z, Koo H, Thurnheer T (2020) Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol. https://doi.org/10.1016/j.tim.2020.03.016

    Article  Google Scholar 

  39. Costa RC, Souza J, Bertolini M, Retamal-Valdes B, Feres M, Barão V (2020) Extracellular biofilm matrix leads to microbial dysbiosis and reduces biofilm susceptibility to antimicrobials on titanium biomaterial: an in vitro and in situ study. Clin Oral Implants Res 12:1173–1186. https://doi.org/10.1111/clr.13663

    Article  Google Scholar 

  40. Apaza-Bedoya K, Tarce M, Benfatti CAM, Henriques B, Mathew MT, Teughels W (2017) Synergistic interactions between corrosion and wear at titanium-based dental implant connections: a scoping review. J Periodontal Res 52:946–954. https://doi.org/10.1111/jre.12469

    Article  CAS  Google Scholar 

  41. Filho AP, Fernandes FS, Straioto FG, Silva WD, Cury AA (2010) Preload loss and bacterial penetration on different implant-abutment connection systems. Braz Dent J 2:123–129. https://doi.org/10.1590/S0103-64402010000200006

    Article  Google Scholar 

  42. Piattelli A, Scarano A, Paolantonio M, Assenza B, Leghissa GC, Di Bonaventura G, Catamo G, Piccolomini R (2001) Fluids and microbial penetration in the internal part of cement-retained versus screw-retained implant-abutment connections. J Periodontol 9:1146–1150. https://doi.org/10.1902/jop.2000.72.9.1146

    Article  Google Scholar 

  43. Bordin D, Cavalcanti IM, Jardim Pimentel M, Fortulan CA, Sotto-Maior BS, Del Bel Cury AA, da Silva WJ (2015) Biofilm and saliva affect the biomechanical behavior of dental implants. J Biomech 6:997–1002. https://doi.org/10.1016/j.jbiomech.2015.02.004

    Article  Google Scholar 

  44. Cense AW, Peeters EA, Gottenbos B, Baaijens FP, Nuijs AM, van Dongen ME (2006) Mechanical properties and failure of Streptococcus mutans biofilms, studied using a microindentation device. J Microbiol Methods 3:463–472. https://doi.org/10.1016/j.mimet.2006.04.023

    Article  CAS  Google Scholar 

  45. Hwang G, Klein MI, Koo H (2014) Analysis of the mechanical stability and surface detachment of mature Streptococcus mutans biofilms by applying a range of external shear forces. Biofouling. https://doi.org/10.1080/08927014.2014.969249

    Article  Google Scholar 

  46. Barão VAR, Yoon CJ, Mathew MT, Yuan JCC, Wu CD, Sukotjo C (2014) Attachment of Porphyromonas gingivalis to corroded commercially pure titanium and titanium–aluminum–vanadium alloy. J Periodontol 9:1275–1282. https://doi.org/10.1902/jop.2014.130595

    Article  Google Scholar 

  47. Ramesh D, Sridhar S, Siddiqui DA, Valderrama P, Rodrigues D (2017) Detoxification of titanium implant surfaces: evaluation of surface morphology and bone-forming cell compatibility. J Bio Tribo Corros 4:1–13. https://doi.org/10.1007/s40735-017-0111-2

    Article  Google Scholar 

  48. Souza JC, Ponthiaux P, Henriques M, Oliveira R, Teughels W, Celis JP, Rocha LA (2013) Corrosion behaviour of titanium in the presence of Streptococcus mutans. J Dent 6:528–534. https://doi.org/10.1016/j.jdent.2013.03.008

    Article  CAS  Google Scholar 

  49. Chang JC, Oshida Y, Gregory RL, Andres CJ, Barco TM, Brown DT (2003) Electrochemical study on microbiology-related corrosion of metallic dental materials. Biomed Mater Eng 3:281–295

    Google Scholar 

  50. Koike M, Fujii H (2001) The corrosion resistance of pure titanium in organic acids. Biomaterials 21:2931–2936. https://doi.org/10.1016/s0142-9612(01)00040-0

    Article  Google Scholar 

  51. Mabilleau G, Bourdon S, Joly-Guillou M, Filmon R, Baslé M, Chappard D (2006) Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium. Acta biomater 2:121–129. https://doi.org/10.1016/j.actbio.2005.09.004

    Article  CAS  Google Scholar 

  52. Souza J, Barbosa SL, Ariza E, Celis J, Rocha LA (2012) Simultaneous degradation by corrosion and wear of titanium in artificial saliva containing fluorides. Wear. https://doi.org/10.1016/J.WEAR.2012.05.030

    Article  Google Scholar 

  53. Beline T, Garcia CS, Ogawa ES, Marques ISV, Matos AO, Sukotjo C, Barão VAR (2016) Surface treatment influences electrochemical stability of cpTi exposed to mouthwashes. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2015.11.045

    Article  Google Scholar 

  54. Peñarrieta-Juanito G, Sordi MB, Henriques B, Dotto M, Teughels W, Silva FS, Magini RS, Souza J (2019) Surface damage of dental implant systems and ions release after exposure to fluoride and hydrogen peroxide. J Periodontal Res 1:46–52. https://doi.org/10.1111/jre.12603

    Article  CAS  Google Scholar 

  55. Mathew MT, Abbey S, Hallab NJ, Hall DJ, Sukotjo C, Wimmer MA (2012) Influence of pH on the tribocorrosion behavior of cp-Ti in the oral environment: synergistic interactions of wear and corrosion. J Biomed Mater Res B 6:1662–1671. https://doi.org/10.1002/jbm.b.32735

    Article  CAS  Google Scholar 

  56. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol. https://doi.org/10.1146/annurev.mi.49.100195.003431

    Article  Google Scholar 

  57. Marsh PD, Moter A (2000) Devine DA (2011) Dental plaque biofilms: communities, conflict and control. Periodontology 1:16–35. https://doi.org/10.1111/j.1600-0757.2009.00339.x

    Article  Google Scholar 

  58. Lafaurie GI, Sabogal MA, Castillo DM, Rincón MV, Gómez LA, Lesmes YA, Chambrone L (2017) Microbiome and microbial biofilm profiles of peri-implantitis: a systematic review. J Periodontol 10:1066–1089. https://doi.org/10.1902/jop.2017.170123

    Article  Google Scholar 

  59. Barão VA, Mathew MT, Assunção WG, Yuan JC, Wimmer MA, Sukotjo C (2011) The role of lipopolysaccharide on the electrochemical behavior of titanium. J Dent Res 5:613–618. https://doi.org/10.1177/0022034510396880

    Article  CAS  Google Scholar 

  60. Faverani LP, Assunção WG, de Carvalho PS, Yuan JC, Sukotjo C, Mathew MT, Barao VA (2014) Effects of dextrose and lipopolysaccharide on the corrosion behavior of a Ti–6Al–4V alloy with a smooth surface or treated with double-acid-etching. PLoS ONE 3:e93377. https://doi.org/10.1371/journal.pone.0093377

    Article  CAS  Google Scholar 

  61. Harada R, Kokubu E, Kinoshita H, Yoshinari M, Ishihara K, Kawada E, Takemoto S (2018) Corrosion behavior of titanium in response to sulfides produced by Porphyromonas gingivalis. Dent Mater Off Publ Acad Dent Mater 2:183–191. https://doi.org/10.1016/j.dental.2017.10.004

    Article  CAS  Google Scholar 

  62. Barão VA, Ricomini-Filho AP, Faverani LP, Del Bel Cury AA, Sukotjo C, Monteiro DR, Yuan JC, Mathew MT, do Amaral RC, Mesquita MF, da Silva WJ, Assunção WG (2015) The role of nicotine, cotinine and caffeine on the electrochemical behavior and bacterial colonization to cp-Ti. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2015.06.026

    Article  Google Scholar 

  63. Figueiredo-Pina CG, Guedes M, Sequeira J, Pinto D, Bernardo N, Carneiro C (2019) On the influence of Streptococcus salivarius on the wear response of dental implants: an in vitro study. J Biomed Mater Res B 5:1393–1399. https://doi.org/10.1002/jbm.b.34231

    Article  CAS  Google Scholar 

  64. Soto-Alvaredo J, Blanco E, Bettmer J, Hevia D, Sainz RM, López Cháves C, Sánchez C, Llopis J, Sanz-Medel A, Montes-Bayón M (2014) Evaluation of the biological effect of Ti generated debris from metal implants: ions and nanoparticles. Metallomics Integr Biomet Sci 9:1702–1708. https://doi.org/10.1039/c4mt00133h

    Article  Google Scholar 

  65. Fretwurst T, Nelson K, Tarnow DP, Wang HL, Giannobile WV (2018) Is metal particle release associated with peri-implant bone destruction? An emerging concept. J Dent Res 3:259–265. https://doi.org/10.1177/0022034517740560

    Article  CAS  Google Scholar 

  66. Pettersson M, Kelk P, Belibasakis GN, Bylund D, Molin Thorén M, Johansson A (2017) Titanium ions form particles that activate and execute interleukin-1β release from lipopolysaccharide-primed macrophages. J Periodontal Res 1:21–32. https://doi.org/10.1111/jre.12364

    Article  CAS  Google Scholar 

  67. Delgado-Ruiz R, Romanos G (2018) Potential causes of titanium particle and ion release in implant dentistry: a systematic review. Int J Mol Sci 11:3585. https://doi.org/10.3390/ijms19113585

    Article  CAS  Google Scholar 

  68. Noronha Oliveira M, Schunemann W, Mathew MT, Henriques B, Magini RS, Teughels W, Souza J (2018) Can degradation products released from dental implants affect peri-implant tissues? J Periodontal Res 1:1–11. https://doi.org/10.1111/jre.12479

    Article  CAS  Google Scholar 

  69. Biguetti C, Cavalla F, Fonseca AC, Tabanez AP, Siddiqui DA, Wheelis S, Taga R, Fakhouri W, Silva RM, Rodrigues D, Garlet G (2021) Effects of titanium corrosion products on in vivo biological response: a basis for the understanding of osseointegration failures mechanisms. Front Mater. https://doi.org/10.3389/fmats.2021.651970

    Article  Google Scholar 

  70. Olmedo DG, Duffó G, Cabrini RL, Guglielmotti MB (2008) Local effect of titanium implant corrosion: an experimental study in rats. Int J Oral Maxillofac Surg 11:1032–1038. https://doi.org/10.1016/j.ijom.2008.05.013

    Article  Google Scholar 

  71. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, Moher D, Peters M, Horsley T, Weeks L, Hempel S, Akl EA, Chang C, McGowan J, Stewart L, Hartling L, Aldcroft A, Wilson MG, Garritty C, Lewin S, Straus SE (2018) PRISMA Extension for Scoping Reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med 7:467–473. https://doi.org/10.7326/M18-0850

    Article  Google Scholar 

  72. Gil FJ, Rodriguez A, Espinar E, Llamas JM, Padullés E, Juárez A (2012) Effect of oral bacteria on the mechanical behavior of titanium dental implants. Int J Oral Maxillofac Implants 1:64–68

    Google Scholar 

  73. Camargo S, Roy T, Xia X, Fares C, Hsu SM, Ren F, Clark AE, Neal D, Esquivel-Upshaw JF (2021) Novel coatings to minimize corrosion of titanium in oral biofilm. Materials (Basel Switz) 2:342. https://doi.org/10.3390/ma14020342

    Article  CAS  Google Scholar 

  74. Rocha SS, Bernardi ACA, Pizzolito AC, Adabo GL, Pizzolito EL (2009) Streptococcus mutans attachment on a cast titanium surface. Mater Res 1:41–44. https://doi.org/10.1590/S1516-14392009000100003

    Article  Google Scholar 

  75. Sridhar S, Wilson TG Jr, Palmer KL, Valderrama P, Mathew MT, Prasad S, Jacobs M, Gindri IM, Rodrigues DC (2015) In vitro investigation of the effect of oral bacteria in the surface oxidation of dental implants. Clin Implant Dent Relat Res 2:e562–e575. https://doi.org/10.1111/cid.12285

    Article  Google Scholar 

  76. Sridhar S, Abidi Z, Wilson TG Jr, Valderrama P, Wadhwani C, Palmer K, Rodrigues DC (2016) In vitro evaluation of the effects of multiple oral factors on dental implants surfaces. J Oral Implantol 3:248–257. https://doi.org/10.1563/aaid-joi-D-15-00165

    Article  Google Scholar 

  77. Lin N, Huang X, Zhang X, Fan A, Qin L, Tang B (2012) In vitro assessments on bacterial adhesion and corrosion performance of TiN coating on Ti6Al4V titanium alloy synthesized by multi-arc ion plating. Appl Surf Sci. https://doi.org/10.1016/J.APSUSC.2012.03.163

    Article  Google Scholar 

  78. Liu R, Tang Y, Zeng L, Zhao Y, Ma Z, Sun Z, Xiang L, Ren L, Yang K (2018) In vitro and in vivo studies of anti-bacterial copper-bearing titanium alloy for dental application. Dent Mater Off Publ Acad Dent Mater 8:1112–1126. https://doi.org/10.1016/j.dental.2018.04.007

    Article  CAS  Google Scholar 

  79. Laurent F, Grosgogeat B, Reclaru L, Dalard F, Lissac M (2001) Comparison of corrosion behaviour in presence of oral bacteria. Biomaterials 16:2273–2282. https://doi.org/10.1016/s0142-9612(00)00416-6

    Article  Google Scholar 

  80. Koh I, Oshida Y, Andres CJ, Gregory RL (2008) Effect of surface area ratios and bacteria on electrochemical behavior of galvanically coupled titanium. Int J Prosthodont 5:433–436

    Google Scholar 

  81. Chandrashekar BL, Siddiqui BA, Palmer KL, Rodrigues DC (2021) Titanium surfaces and detoxification procedures: effects of bacterial biofilm and citric acid exposure on oxide layer behavior. J Bio Tribo Corros. https://doi.org/10.1007/s40735-021-00484-w

    Article  Google Scholar 

  82. Silva D, Guerra C, Muñoz H, Aguilar C, Walter M, Azócar M, Muñoz L, Gürbüz E, Ringuedé A, Cassir M, Sancy M (2020) The effect of Staphylococcus aureus on the electrochemical behavior of porous Ti–6Al–4V alloy. Bioelectrochemistry. https://doi.org/10.1016/j.bioelechem.2020.107622

    Article  Google Scholar 

  83. Li L, Li S, Qu Q, Zuo L, He Y, Zhu B, Li C (2017) Streptococcus sanguinis biofilm architecture and its influence on titanium corrosion in enriched artificial saliva. Materials (Basel Switz) 3:255. https://doi.org/10.3390/ma10030255

    Article  CAS  Google Scholar 

  84. Zhang SM, Qiu J, Tian F, Guo XK, Zhang FQ, Huang QF (2013) Corrosion behavior of pure titanium in the presence of Actinomyces naeslundii. J Mater Sci Mater Med 5:1229–1237. https://doi.org/10.1007/s10856-013-4888-3

    Article  CAS  Google Scholar 

  85. De la Garza-Ramos MA, Estupiñan-Lopez FH, Gaona-Tiburcio C, Beltrán-Novelo LG, Zambrano-Robledo P, Cabral-Miramontes J, Almeraya-Calderón F (2020) Electrochemical behavior of Ti6Al4V alloy used in dental implants immersed in Streptococcus gordonii and Fusobacterium nucleatum solutions. Materials (Basel Switz) 18:4185. https://doi.org/10.3390/ma13184185

    Article  CAS  Google Scholar 

  86. Sridhar S, Wang F, Wilson TG, Palmer K, Valderrama P, Rodrigues DC (2019) The role of bacterial biofilm and mechanical forces in modulating dental implant failures. J Mech Behav Biomed Mater. https://doi.org/10.1016/j.jmbbm.2019.01.012

    Article  Google Scholar 

  87. Ogawa ES, Matos AO, Beline T, Marques ISV, Sukotjo C, Mathew MT, Rangel EC, Cruz NC, Mesquita MF, Consani RX (2016) Surface-treated commercially pure titanium for biomedical applications: electrochemical, structural, mechanical and chemical characterizations. Mater Sci Eng 65:251–261. https://doi.org/10.1016/j.msec.2016.04.036

    Article  CAS  Google Scholar 

  88. Spriano S, Yamaguchi S, Baino F, Ferraris S (2018) A critical review of multifunctional titanium surfaces: new frontiers for improving osseointegration and host response, avoiding bacteria contamination. Acta biomater. https://doi.org/10.1016/j.actbio.2018.08.013

    Article  Google Scholar 

  89. Linklater DP, Baulin VA, Juodkazis S, Crawford RJ, Stoodley P, Ivanova EP (2021) Mechano-bactericidal actions of nanostructured surfaces. Nat Rev Microbiol 1:8–22. https://doi.org/10.1038/s41579-020-0414-z

    Article  CAS  Google Scholar 

  90. Ferraris S, Venturello A, Miola M, Cochis A, Rimondini L, Spriano S (2014) Antibacterial and bioactive nanostructured titanium surfaces for bone integration. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2014.05.056

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the São Paulo Research Foundation (FAPESP; Grant Number #2020/10436-4) for the scholarship provided to the first author), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior: Brazil (CAPES, Finance Code 001) for the scholarship provided to the first and second authors, the Conselho Nacional de Desenvolvimento Científico e Tecnológico-Brazil (CNPq, Grant Number 304853/2018-6) provided to VARB.

Author information

Authors and Affiliations

Authors

Contributions

RCC, VLA, PHCM, and IMV collected the data and led the writing. MB, MTM, VAR, and JGSS made the critical review of article content and writing. All authors listed have made a substantial, direct, and intellectual contribution to the work, and approved it for publication.

Corresponding authors

Correspondence to Valentim A. R. Barão or João Gabriel S. Souza.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Valentim A. R. Barão’s and João Gabriel S. Souza’s names were corrected.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 316 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, R.C., Abdo, V.L., Mendes, P.H.C. et al. Microbial Corrosion in Titanium-Based Dental Implants: How Tiny Bacteria Can Create a Big Problem?. J Bio Tribo Corros 7, 136 (2021). https://doi.org/10.1007/s40735-021-00575-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-021-00575-8

Keywords

Navigation