Skip to main content
Log in

Effects of Ti Content and Annealing on Corrosion Resistance of Electroless Ni–P–Ti Composite Coatings

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Electroless Ni–P coatings have good corrosion resistance but low toughness. To improve the toughness of Ni–P coatings, superelastic NiTi particles were incorporated within the Ni–P coatings. However, because of the high cost of the superelastic NiTi in comparison with Ti powder, Ti particles were co-deposited with Ni–P and subsequently annealed to produce Ni–P-NiTi coating. The formation of superelastic NiTi has been proven to improve the toughness of Ni–P coating in our previous study. In the present study, the effects of Ti content and annealing on corrosion behavior of Ni–P–Ti coatings were investigated using Potentiodynamic polarization (PP) and electrochemical impedance spectroscopy (EIS) tests in a 3.5 wt% sodium chloride solution at room temperature. PP and EIS results revealed that as-deposited Ni–P coating has a corrosion rate of 9.01 × 10–2 mm/year and a charge transfer resistance of 32,865 Ωcm2, while annealed 11.8 wt% Ti coating displays lower corrosion rate of 3.31 × 10–2 mm/year and higher charge transfer resistance of 42,653 Ωcm2. The corrosion resistance of as-deposited and annealed Ni–P–Ti coatings increases with an increase in Ti content up to 11.8 wt%, then drops slightly when the Ti content reaches 15.2 wt%. It was found that the as-deposited and annealed Ni–P coatings undergo pitting corrosion, whereas as-deposited and annealed Ni–P–Ti coatings exhibit uniform corrosion having higher corrosion resistance. Porosity density of the coatings was calculated to facilitate the understanding of corrosion behavior. This study also discusses the effects of microstructure and surface morphology on the corrosion mechanisms of as-deposited and annealed Ni–P–Ti coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wang C, Farhat Z, Jarjoura G, Hassan MK, Abdullah AM (2018) Indentation and bending behavior of electroless Ni–P–Ti composite coatings on pipeline steel. Surf Coat Technol 334:243–252

    Article  CAS  Google Scholar 

  2. MacLean M, Farhat Z, Jarjoura G, Fayyad E, Abdullah A, Hassan M (2019) Fabrication and investigation of the scratch and indentation behaviour of new generation Ni–P–nano–NiTi composite coating for oil and gas pipelines. Wear 426–427:265–276

    Article  CAS  Google Scholar 

  3. Wang C (2017) Indentation and fracture behaviour of electroless Ni–P-based composite coatings. Dalhousie University, Halifax

    Google Scholar 

  4. Bayram TC, Orbey N, Adhikari RY, Tuominen M (2015) FP-based formulations as protective coatings in oil/gas pipelines. Prog Org Coat 88:54–63

    Article  CAS  Google Scholar 

  5. Taubkin IS, Sukhov AV, Rudakova TA (2004) Analysis of the behavior of a protective polymer coating for gas pipelines under the action of applied heat. Plast Massy 6:31–37

    Google Scholar 

  6. Brenner A, Riddell GE (1946) Nickel plating on steel by chemical reduction. J Res Natl Bur Stand 37:31–34

    Article  CAS  Google Scholar 

  7. Vojtěch D, Novák M, Zelinková M, Novák P, Michalcová A, Fabián T (2009) Structural evolution of electroless Ni–P coating on Al–12wt.% Si alloy during heat treatment at high temperatures. Appl Surf Sci 255:3745–3751

    Article  CAS  Google Scholar 

  8. Lee CK (2009) Structure electrochemical and wear-corrosion properties of electroless nickel–phosphorus deposition on CFRP composites. Mater Chem Phys 114:125–133

    Article  CAS  Google Scholar 

  9. Xu XQ, Miao J, Bai ZQ, Feng YR, Ma QR, Zhao WZ (2012) The corrosion behavior of electroless Ni–P coating in Cl−/H2S environment. Appl Surf Sci 258:8802–8806

    Article  CAS  Google Scholar 

  10. Ghavidel N, Allahkaram SR, Naderi R, Barzegar M, Bakhshandeh H (2020) Corrosion and wear behavior of an electroless Ni–P/nano–SiC coating on AZ31 Mg alloy obtained through environmentally-friendly conversion coating. Surf Coat Technol 382:125156–125162

    Article  CAS  Google Scholar 

  11. Sharifalhoseini Z, Entezari MH, Davoodi A, Shahidi M (2020) Access to nanocrystalline, uniform, and fine-grained Ni–P coating with improved anticorrosive action through the growth of ZnO nanostructures before the plating process. Corros Sci 172:108743

    Article  CAS  Google Scholar 

  12. Dhakal DR, Gyawali G, Kshetri YK, Choi JH, Lee SW (2020) Microstructural and electrochemical corrosion properties of electroless Ni–P–TaC composite coating. Surf Coat Technol 381:125135

    Article  CAS  Google Scholar 

  13. Li YF, Zhang MM, Zhang YQ, Wu TT, Zhao HY (2020) Effect of current density on properties of sol-enhanced Ni–P–Al2O3 composite coating. Int J Electrochem Sci 15:2752–2765

    Article  CAS  Google Scholar 

  14. https://www.us-nano.com/nanopowders

  15. Li Z, Farhat Z (2020) Hertzian indentation behavior of electroless Ni–P–Ti composite coatings. Metall Mater Trans A 51:3674–3691

    Article  CAS  Google Scholar 

  16. Diegle RB, Sorensen NR, Clayton CR, Helfand MA, Yu YC (1988) An XPS investigation into the passivity of an amorphous Ni–20P. J Electrochem Soc 135:1085–1092

    Article  CAS  Google Scholar 

  17. Pourbaix M (1974) Altas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Houston, pp 493–450

    Google Scholar 

  18. Calderón JA, Henao JE, Gómez MA (2014) Erosion–corrosion resistance of Ni composite coatings with embedded SiC nanoparticles. Electrochim Acta 124:190–198

    Article  CAS  Google Scholar 

  19. Tamilarasan TR, Sanjith U, Shankar SM, Rajagopal G (2017) Effect of reduced graphene oxide (rGO) on corrosion and erosion-corrosion behaviour of electroless Ni–P coatings. Wear 390–391:385–391

    Article  CAS  Google Scholar 

  20. Li Z, Farhat Z, Jarjoura G, Fayyad E, Abdullah A, Hassan M (2019) Synthesis and characterization of scratch resistant Ni–P–Ti based composite coating. Tribol Trans 62:880–896

    Article  CAS  Google Scholar 

  21. Li Z, Farhat Z (2021) The benefit of superelastic NiTi addition on corrosion performance of electroless Ni–P coating during an accidental scratch event. J Bio- Tribo-Corros 7:1–12

    Article  Google Scholar 

  22. Cui L, Dadvand N, Farhat Z, Kipouros G (2013) Electroless nickel phosphorous plating on carbon steel. Mater Sci Technol 3:2224–2237

    Google Scholar 

  23. Mazaheri H, Allahkaram SR (2012) Deposition, characterization and electrochemical evaluation of Ni–P–nano diamond composite coatings. Appl Surf Sci 258:4574–4580

    Article  CAS  Google Scholar 

  24. Ciubotariu AC, Benea L, Lakatos-Varsanyi M, Dragan V (2008) Electrochemical impedance spectroscopy and corrosion behaviour of Al2O3–Ni nano composite coatings. Electrochim Acta 53:4557–4563

    Article  CAS  Google Scholar 

  25. Qi J, Huang B, Wang Z, Ding H, Xi J, Fu W (2017) Dependence of corrosion resistance on grain boundary characteristics in a high nitrogen CrMn austenitic stainless steel. J Mater Sci Technol 33:1621–1628

    Article  CAS  Google Scholar 

  26. Xie JH, Alpas AT, Northwood DO (2003) Mechano-electrochemical effect between erosion and corrosion. J Mater Sci 38:4849–4856

    Article  CAS  Google Scholar 

  27. Hu J, Fang L, Liao XL, Shi LT (2016) Influences of different reinforcement particles on performances of electroless composites. Surf Eng 33:362–368

    Article  CAS  Google Scholar 

  28. Creus J, Mazille H, Idrissi H (2000) Porosity evaluation of protective coatings onto steel through electrochemical techniques. Surf Coat Technol 130:224–232

    Article  CAS  Google Scholar 

  29. Zhao Y, Jiang C, Xu Z, Cai F, Zhang Z, Fu P (2015) Microstructure and corrosion behavior of Ti nanoparticles reinforced Ni–Ti composite coatings by electrodeposition. Mater Des 85:39–46

    Article  CAS  Google Scholar 

  30. Wang S, Huang X, Gong M, Huang W (2015) Microstructure and mechanical properties of Ni–P–Si3N4 nanowire electroless composite coatings. Appl Surf Sci 357:328–332

    Article  CAS  Google Scholar 

  31. Jiang B, Jiang SL, Ma AL, Zheng YG (2014) Effect of heat treatment on erosion-corrosion behavior of electroless Ni–P coatings in saline water. Mater Manuf Processes 29:74–82

    Article  CAS  Google Scholar 

  32. Smigelkas AD, Kirkendall EO (1947) Zinc diffusion in alpha brass. Trans AIME 171:130–134

    Google Scholar 

  33. Hasannaeimi V, Shahrabi T, Sanjabi S (2012) Fabrication of NiTi layer via co-electrodeposition of nickel and titanium. Surf Coat Technol 210:10–14

    Article  CAS  Google Scholar 

  34. Paz y Puente AE, Dunand DC (2018) Shape-memory characterization of NiTi microtubes fabricated through interdiffusion of Ti-Coated Ni wires. Acta Mater 156:1–10

    Article  CAS  Google Scholar 

  35. Veloz MA, Gonzalez I (2002) Electrochemical study of carbon steel corrosion in buffered acetic acid solutions with chlorides and H2S. Electrochemica Acta 48:135–144

    Article  CAS  Google Scholar 

  36. Fayyad EM, Hassan MK, Rasool K, Mahmoud KA, Mohamed AMA, Jarjoura G, Farhat Z, Abdullah AM (2019) Novel electroless deposited corrosion—resistant and anti-bacterial NiP–TiNi nanocomposite coatings. Surf Coat Technol 369:323–333

    Article  CAS  Google Scholar 

  37. Sharifalhoseini Z, Entezari MH (2015) Enhancement of the corrosion protection of electroless Ni–P coating by deposition of sonosynthesized ZnO nanoparticles. Appl Surf Sci 351:1060–1068

    Article  CAS  Google Scholar 

  38. J.I.C.F.D. Data® (2020) Powder diffraction file (PDF) No. 04-011-2340. JCPDS, Newtown Square

    Google Scholar 

  39. J.I.C.F.D. Data® (2020) Powder diffraction file (PDF) No. 00-015-7502. JCPDS, Newtown Square

    Google Scholar 

  40. Abdel AA (2008) Hard and corrosion resistant nanocomposite coating for Al alloy. Mater Sci Eng, A 474:181–187

    Article  CAS  Google Scholar 

  41. Revie RW (2011) Uhlig’s Corrosion Handbook. Wiley, Ottawa, pp 533–535

    Book  Google Scholar 

  42. Es-Souni M, Es-Souni M, Fischer-Brandies H (2005) Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal Bioanal Chem 381:557–567

    Article  CAS  Google Scholar 

  43. Gholizadeh-Gheshlaghi M, Seifzadeh D, Shoghi P, Habibi-Yangjeh A (2018) Electroless Ni–P/nano–WO3 coating and its mechanical and corrosion protection properties. J Alloy Compd 769:149–160

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Natural Scientific and Engineering Research Council of Canada for financial contribution (Grant No. RGPIN 327449) toward this research study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Farhat, Z. Effects of Ti Content and Annealing on Corrosion Resistance of Electroless Ni–P–Ti Composite Coatings. J Bio Tribo Corros 7, 97 (2021). https://doi.org/10.1007/s40735-021-00535-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-021-00535-2

Keywords

Navigation