Skip to main content
Log in

Synthesis and Characterization of Novel Fatty Alcohol Ethoxylate Surfactants for Corrosion Inhibition of Mild Steel

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Novel fatty alcohol ethoxylate surfactants (NFAES) C1:(C12–C14–EO30) and C2:(C16–C18–EO30) were synthesized and characterized, and the effect of an increase of the hydrocarbon chain length at the same numbers of ethoxylated groups of these surfactants on the corrosion of mild steel (MS) in 1 M HCl was studied by different methods. These have revealed that the inhibition efficiency (IE%) increases with increasing the dose and the hydrocarbon chain length at the same number of ethoxylated groups in the surfactants (NFAES). The surfactants (NFAES) have a perfect performance as corrosion inhibitors. The results revealed that C2 > C1 in the IE% at the same studied dose of each surfactant, The IE% reached 85% at the very low dose of 30 ppm. Potentiodynamic measurements (PP) revealed that the NFAES surfactants are working as mixed type of inhibitors for both cathodic (reduction) and anodic (oxidation) reactions. The critical micelle dose for C1 is 350 ppm while for C2 it is 30 ppm. IE% acquired from PP, electrochemical impedance spectroscopy, and electrochemical frequency modulation are approximatly the same. The surface morphology was analyzed and is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang R, Somasundaran P (2006) Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv Colloid Interface Sci 123:213–229. https://doi.org/10.1016/j.cis.2006.07.004

    Article  CAS  Google Scholar 

  2. Zhu Y, Free ML (2015) The effects of surfactant dose, adsorption, aggregation, and solution conditions on steel corrosion inhibition and associated modeling in aqueous media. Corros Sci 102:233–250. https://doi.org/10.1016/j.corsci.2015.10.012

    Article  CAS  Google Scholar 

  3. Zhu Y, Free ML (2015) Experimental investigation and modeling of the performance of pure and mixed surfactant inhibitors: partitioning and distribution in water-oil environments. J Electrochem Soc 162:702–717. https://doi.org/10.1149/2.0291514jes

    Article  CAS  Google Scholar 

  4. Zhu Y, Free ML, Cho J (2016) Integrated evaluation of mixed surfactants’ distribution in water oil- steel pipe environments and associated corrosion inhibition efficiency. Corros Sci 110:213–227. https://doi.org/10.1016/j.corsci.2016.04.043

    Article  CAS  Google Scholar 

  5. Sliem MH, Afifi M, Radwan AB, Fayyad EM, Shibl MF, Heakal FET, Abdullah AM (2019) AEO7 surfactant as an eco-friendly corrosion inhibitor for carbon steel in HCl solution. Nat Sci Rep 9:1–16. https://doi.org/10.1038/s41598-018-37254-7

    Article  CAS  Google Scholar 

  6. Abd-Elaal AA, Elbasiony NM, Shaban SM, Zaki EG (2018) Studying the corrosion inhibition of some prepared nonionic surfactants based on 3-(4-hydroxyphenyl) propanoic acid and estimating the influence of silver nanoparticles on the surface parameters. J Mol Liq 249:304–317. https://doi.org/10.1016/j.molliq.2017.11.052

    Article  CAS  Google Scholar 

  7. Kibbey TCG, Chen L (2008) Phase volume effects in the sub- and super-CMC partitioning of nonionic surfactant mixtures between water and immiscible organic liquids. Colloids Surf A 326:73–82. https://doi.org/10.1016/j.colsurfa.2008.05.018

    Article  CAS  Google Scholar 

  8. Stoyanov SD, Paunov VN, Rehage H, Kuhn H (2004) A new class of interfacial tension isotherms for nonionic surfactants based on local self-consistent mean field theory; classical isotherms revisite. Phys Chem Chem Phys 6:596–603. https://doi.org/10.1039/b314100d

    Article  CAS  Google Scholar 

  9. Wang W, Free ML (2004) Prediction and measurement of corrosion inhibition of mild steel using nonionic surfactants in chloride media. Corros Sci 46:2601–2611. https://doi.org/10.1016/s0010-938x(03)00152-5

    Article  CAS  Google Scholar 

  10. Abd El-Ghaffar MA, Sherif MH, El-Habab AT (2017) Synthesis, characterization, and evaluation of ethoxylated lauryl-myrisityl alcohol nonionic surfactants as wetting agents, anti-foamers, and minimum film forming temperature reducers in emulsion polymer lattices. J Surfactants Deterg 20:117–128. https://doi.org/10.1007/s11743-016-1898-4

    Article  CAS  Google Scholar 

  11. Moreira L, Firoozabadi A (2010) Molecular thermodynamic modeling of specific ion effects on micellization of ionic surfactants. Langmuir 26:15177–15191. https://doi.org/10.1021/la102536y

    Article  CAS  Google Scholar 

  12. Valkovska DS, Shearman GC, Bain CD, Darton RC, Eastoe J (2004) Adsorption of ionic surfactants at an expanding air-water interface. Langmuir 20:4436–4445. https://doi.org/10.1021/la035739b

    Article  CAS  Google Scholar 

  13. Fuchs-Godec R, Pavlovic MG (2012) Synergistic effect between non-ionic surfactant and halide ions in the forms of inorganic or organic salts for the corrosion inhibition of stainlesssteel X4Cr13 in sulphuric acid. Corros Sci 58:192–201. https://doi.org/10.1016/j.corsci.2012.01.027

    Article  CAS  Google Scholar 

  14. Hegazy AY, El-Shafaie M, Berry KM (2016) Novel cationic surfactants for corrosion inhibition of carbon steel pipelines in oil and gas wells applications. J Mol Liq 214:347–356. https://doi.org/10.1016/j.molliq.2015.11.047

    Article  CAS  Google Scholar 

  15. Sonu, Tiwari AK, Saha SK (2013) Study on mixed micelles of cationic gemini surfactants having hydroxyl groups in the spacers with conventional cationic surfactants: effects of spacer group and hydrocarbon tail length. Ind Eng Chem Res 52:5895–5905. https://doi.org/10.1021/ie303616j

    Article  CAS  Google Scholar 

  16. Shalaby MN, Osman MM, El Feky AA (1999) Effect of some organic surfactants on corrosion inhibition of steel in sea water. Anti-corros Methods Mater 46:254–265. https://doi.org/10.1108/00035599910278660

    Article  CAS  Google Scholar 

  17. Rajendran S, Mariajoany R, Apparao BV, Palaniswamy N (2000) Synergistic effect of calcium gluconate and Zn2+ on the inhibition of corrosion of mild steel in neutral aqueous environment. Trans SAEST 35:3

    Google Scholar 

  18. Khan Z (1999) Kinetics and mechanism of the reaction between dimethylformamide and chromium (VI). Int J Chem Kinet 31:409–415. https://doi.org/10.1002/(SICI)1097-4601(1999)31:6%3c409::AID-KIN2%3e3.0.CO;2-8

    Article  CAS  Google Scholar 

  19. Shaban SM, El-Sherif RM, Fahim MA (2018) Studying the surface behavior of some prepared free hydroxyl cationic amphipathic compounds in aqueous solution and their biological activity. J Mol Liq 252:40–51. https://doi.org/10.1016/j.molliq.2017.12.105

    Article  CAS  Google Scholar 

  20. Sk MH et al (2017) Local supersaturation and the growth of protective scales during CO2 corrosion of steel: effect of pH and solution flow. Corros Sci 126:26–36. https://doi.org/10.1016/j.corsci.2017.05.026

    Article  CAS  Google Scholar 

  21. Zhu Y, Free ML, Woollam R, Durnie W (2017) A review of surfactants as corrosion inhibitors and associated modeling. Prog Mater Sci 90:159–223. https://doi.org/10.1016/j.pmatsci.2017.07.006

    Article  CAS  Google Scholar 

  22. Kumar R, Yadav OS, Singh G (2017) Electrochemical and surface characterization of a new eco-friendly corrosion inhibitor for mild steel in acidic media: a cumulative study. J Mol Liq 237:413–427. https://doi.org/10.1016/j.molliq.2017.04.103

    Article  CAS  Google Scholar 

  23. Nnaji NJN et al (2017) Morpholine and piperazine based carboxamide derivatives as corrosion inhibitors of mild steel in HCl medium. J Mol Liq 230:652–661. https://doi.org/10.1016/j.molliq.2017.01.075

    Article  CAS  Google Scholar 

  24. Han T, Guo J, Zhao Q, Wu Y, Zhang Y (2020) Enhanced corrosion inhibition of LCS by pyridyl gemini surfactants with different alkyl chains. Mater Chem Phys 240:122156. https://doi.org/10.1016/j.matchemphys.2019.122156

    Article  CAS  Google Scholar 

  25. Fouda AS, Al-Zehry HH, Elsayed M (2018) Synergistic effect of potassium iodide with cassia italica extract on the corrosion inhibition of carbon steel used in cooling water systems in 0.5 M H2SO4. J Bio- Tribo-Corros 4:23. https://doi.org/10.1007/s40735-018-0138-z

    Article  Google Scholar 

  26. Heakal FE, Elkholy AE (2017) Gemini surfactants as corrosion inhibitors for carbon steel. J Mol Liq 230:395–407. https://doi.org/10.1016/j.molliq.2017.01.047

    Article  CAS  Google Scholar 

  27. Wu J, Cai G, Liu J, Ge H, Wang J (2014) Eco-friendly surface modification on polyester fabrics by esterase treatment. Appl Surf Sci 295:150–157. https://doi.org/10.1016/j.apsusc.2014.01.019

    Article  CAS  Google Scholar 

  28. Kousar K, Ljungdahl T, Wetzel A, Dowhyj M, Oskarsson H, Walton AS, Lindsay R (2020) An exemplar imidazoline surfactant for corrosion inhibitor studies: synthesis, characterization, and physicochemical properties. J Surfactants Deterg 23:225–234. https://doi.org/10.1002/jsde.12363

    Article  CAS  Google Scholar 

  29. Deyab MA (2018) Efficiency of cationic surfactant as microbial corrosion inhibitor for carbon steel in oilfield saline water. J Mol Liq 255:550–555. https://doi.org/10.1016/j.molliq.2018.02.019

    Article  CAS  Google Scholar 

  30. Reichenbacher M, Popp J (2012) Vibrational spectroscopy. Challenges in molecular structure determination. Springer, Berlin

    Chapter  Google Scholar 

  31. Cowell MA, Kibbey TCG, Zimmerman JB, Hayes KF (2000) Partitioning of ethoxylated nonionic surfactants in water/NAPL systems: effects of surfactants and NAPL properties. Environ Sci Technol 34:1583–1588. https://doi.org/10.1021/es9908826

    Article  CAS  Google Scholar 

  32. Bianchetti CLDGO, Seddon KR (2015) Bleaching systems in domestic laundry detergents: a review. RSC Adv 5:65365–65384. https://doi.org/10.1039/C5RA05328E

    Article  CAS  Google Scholar 

  33. Fuchs-Godec R (2009) Effects of surfactants and their mixtures on inhibition of the corrosion process of ferritic stainless steel. Electrochim Acta 54:2171–2179. https://doi.org/10.1016/j.electacta.2008.10.014

    Article  CAS  Google Scholar 

  34. Abdallah M (2003) Ethoxylated fatty alcohols as corrosion inhibitors for dissolution of zinc in hydrochloric acid. Corros Sci 45:2705–2716. https://doi.org/10.1016/s0010-938x(03)00107-0

    Article  CAS  Google Scholar 

  35. Mobin M et al (2017) Bio-/environment-friendly cationic gemini surfactant as novel corrosion inhibitor for mild steel in 1 M HCl solution. J Surfactants Deterg 20:57–74. https://doi.org/10.1007/s11743-016-1904-X

    Article  CAS  Google Scholar 

  36. Samy AAA-E, Shaban M, Salah MT (2016) Gravimetric and electrochemical evaluation of three nonionic dithiol surfactants as corrosion inhibitors for mild steel in 1 M HCl solution. J Mol Liq 216:392–400. https://doi.org/10.1016/j.molliq.2016.01.048

    Article  CAS  Google Scholar 

  37. Ghoulam B, Moatadid N, Graciaa A, Lachaise J (2002) Effects of oxyethylene chain length and temperature on partitioning of homologous polyoxyethylene nonionic surfactants between water and isooctane. Langmuir 18:4367–4371. https://doi.org/10.1021/la0117707

    Article  CAS  Google Scholar 

  38. Ghoulam MB, Moatadid N, Graciaa A, Lachaise J (2004) Quantitative effect of nonionic surfactant partitioning on the hydrophile-lipophile balance temperature. Langmuir 20:2584–2589. https://doi.org/10.1021/la030306u

    Article  CAS  Google Scholar 

  39. Kokalj A, Peljhan S, Finsgar M, Milosev I (2010) What determines the inhibition effectiveness of ATA, BTAH, and BTAOH corrosion inhibitors on copper. J Am Chem Soc 132:16657–16668. https://doi.org/10.1021/ja107704y

    Article  CAS  Google Scholar 

  40. Gece G (2011) Drugs: a review of promising novel corrosion inhibitors. Corros Sci 53:3873–3898. https://doi.org/10.1016/j.corsci.2011.08.006

    Article  CAS  Google Scholar 

  41. Xu Q, Wang L, Xing F (2011) Synthesis and properties of dissymmetric gemini surfactants. J Surfactants Deterg 14:85–90. https://doi.org/10.1007/s11743-010-1207-6

    Article  CAS  Google Scholar 

  42. Zhu Y, Free ML, Yi G (2015) Electrochemical measurement, modeling, and prediction of corrosion inhibition efficiency of ternary mixtures of homologous surfactants in salt solution. Corros Sci 98:417–429. https://doi.org/10.1016/j.corsci.2015.05.050

    Article  CAS  Google Scholar 

  43. Zhang S, Tao Z, Liao S, Wu F (2010) Substitutional adsorption isotherms and corrosion inhibitive properties of some oxadiazol-triazole derivative in acidic solution. Corros Sci 52:3126–3132. https://doi.org/10.1016/j.corsci.2010.05.035

    Article  CAS  Google Scholar 

  44. Naderi AHE, Jafari M, Ehteshamzadeh MG, Hosseini G (2009) Effect of carbonsteel microstructures and molecular structure of two new Schiff base compounds on inhibition performance in 1 M HCl solution by EIS. Mater Chem Phys 115:852–858. https://doi.org/10.1016/j.matchemphys.2009.03.002

    Article  CAS  Google Scholar 

  45. Shukla SK, Quraishi MA, Prakash R (2008) A self-doped conducting polymer “polyanthranilic acid”: an efficient corrosion inhibitor for mild steel in acidic solution. Corros Sci 50:2867–2872. https://doi.org/10.1016/j.corsci.2008.07.025

    Article  CAS  Google Scholar 

  46. Khaled KF, Babić-Samardžija K, Hackerman N (2006) Cobalt (III) complexes of macrocyclic-bidentate type as a new group of corrosion inhibitors for iron in perchloric acid. Corros Sci 48:3014–3034. https://doi.org/10.1016/j.corsci.2005.11.011

    Article  CAS  Google Scholar 

  47. Arthur JRHT, Phan L, Jessop PG, Hodson PV (2012) Effects-driven chemical design: the acute toxicity of CO2-triggered switchable surfactants to rainbow trout can be predicted from octanol-water partition coefficients. Green Chem 14:357–362. https://doi.org/10.1039/C1GC15620A

    Article  CAS  Google Scholar 

  48. Macdonald JR (1987) Impedance spectroscopy and its use in analyzing the steady-state AC response of solid and liquid electrolytes. J Electroanal Chem Interfacial Electrochem 223:25–50. https://doi.org/10.1016/0022-0728(87)85249-x

    Article  CAS  Google Scholar 

  49. Shaban MM, Eid AM, Farag RK, Negm NA, Fadda AA, Migahed MA (2020) Novel trimeric cationic pyrdinium surfactants as bi-functional corrosion inhibitors and antiscalants for API 5L X70 LCS against oilfield formation water. J Mol Liq. https://doi.org/10.1016/j.molliq.2020.112817

    Article  Google Scholar 

  50. Labena A, Hegazy MA, Sami RM, Hozzein WN (2020) Multiple applications of a novel cationic gemini surfactant: anti-microbial, anti-biofilm, biocide, salinity corrosion inhibitor, and biofilm dispersion (Part II). Molecules 25:1348. https://doi.org/10.3390/molecules25061348

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Fouda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouda, A.S., El-Maksoud, S.A.A., El-Habab, A.T. et al. Synthesis and Characterization of Novel Fatty Alcohol Ethoxylate Surfactants for Corrosion Inhibition of Mild Steel. J Bio Tribo Corros 7, 18 (2021). https://doi.org/10.1007/s40735-020-00448-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-020-00448-6

Keywords

Navigation