Skip to main content
Log in

Effects of Substrate Composition and Treatment Times on the Erosive Wear of Titanium Aluminide Coating: Prepared By Pack Cementation

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

This present work aims to investigate the effect of processing time on the erosion resistance of 316 stainless steel and AISI H13 hot working tool steel treated by pack cementation. For this purpose, aluminum and titanium elements were simultaneously deposited on the surface of the two steels at 1050 °C for 4, 8 and 12 h using a pack mix containing an NH4Cl-based activator. The erosion wear experiments were conducted using both air jet and sand blast erosion equipment at impact angles of 30° and 90°. The microstructures of the two studied steels, in terms of surface morphology and related formed phases, were investigated using X-ray diffraction, scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectroscope (EDS), while the hardness and the erosion resistance of the coatings were assessed using Vickers’ microhardness and the weight loss per unit mass erodent, respectively. The results showed that all coatings have high erosion rate values at low impact angle of 30° which is thought to be associated with ductile erosion behavior. Furthermore, the coatings obtained on 316 stainless steel exhibited better erosion resistance than those obtained on AISI H13 steel. SEM analysis of eroded surfaces of all coatings revealed that the predominant erosion mechanism of Ti–Al pack cementation coatings was the formation and extrusion of platelet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Pinedo CE, Tschiptschin AP (2013) Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel. REM-Revista Escola de Minas 66:209–214. https://doi.org/10.1590/S0370-44672013000200011

    Article  Google Scholar 

  2. Günen A, Karahan IH, Karakaş MS, Kurt B, Kanca Y, Çay VV, Yıldız M (2019) Properties and corrosion resistance of AISI H13 hot-work tool steel with borided B4C powders. Met Mater Int. https://doi.org/10.1007/s12540-019-00421-0

    Article  Google Scholar 

  3. Díaz-Guillén JC, Naeem M, Acevedo-Dávila JL, Hdz-García HM, Iqbal J, Khan MA, Mayen J (2020) Improved mechanical properties, wear and corrosion resistance of 316L Steel by homogeneous chromium nitride layer synthesis using plasma nitriding. J Mater Eng Perform 29:877–889. https://doi.org/10.1007/s11665-020-04653-9

    Article  CAS  Google Scholar 

  4. Liu E, Zhang Y, Zhu L, Zeng Z, Gao R (2017) Effect of strain-induced martensite on the tribocorrosion of AISI 316L austenitic stainless steel in seawater. RSC Adv 7(71):44923–44932. https://doi.org/10.1039/C7RA07318F

    Article  CAS  Google Scholar 

  5. Martins RF, Branco CM (2004) A fatigue and creep study in austenitic stainless steel 316L used in exhaust pipes of naval gas turbines. Fatigue Fract Eng Mater Struct 27(9):861–871. https://doi.org/10.1111/j.1460-2695.2004.00783.x

    Article  CAS  Google Scholar 

  6. Naimi S, Hosseini SM (2015) Tool steels in die-casting utilization and increased mold life. Adv Mech Eng 7(1):1–10. https://doi.org/10.1155/2014/286071

    Article  Google Scholar 

  7. Krishnamurthy N, Murali MS, Venkataraman B, Mukunda PG (2012) Characterization and solid particle erosion behavior of plasma sprayed alumina and calcia-stabilized zirconia coatings on Al-6061 substrate. Wear 274–275:15–27. https://doi.org/10.1016/j.wear.2011.08.003

    Article  CAS  Google Scholar 

  8. Mishra SB, Prakash S, Chandra K (2006) Studies on erosion behaviour of plasma sprayed coatings on a Ni-based superalloy. Wear 260:422–432. https://doi.org/10.1016/j.wear.2005.02.098

    Article  CAS  Google Scholar 

  9. Podgornik B, Sedlaček M, Žužek B, Guštin A (2020) Properties of tool steels and their importance when used in a coated system. Coatings 10(3):265. https://doi.org/10.3390/coatings10030265

    Article  CAS  Google Scholar 

  10. Tabakoff W (1999) Erosion resistance of superalloys and different coatings exposed to particulate flows at high temperature. Surf Coat Technol 120–121:542–547. https://doi.org/10.1016/S0257-8972(99)00434-X

    Article  Google Scholar 

  11. Yoshihara M, Kim Y-W (2005) Oxidation behavior of gamma alloys designed for high temperature applications. Intermetallics 13:952–958. https://doi.org/10.1016/j.intermet.2004.12.007

    Article  CAS  Google Scholar 

  12. Houngninou C, Chevalier S, Larpin JP (2004) Synthesis and characterisation of pack cemented aluminide coatings on metals. Appl Surf Sci 236:256–269. https://doi.org/10.1016/j.apsusc.2004.04.026

    Article  CAS  Google Scholar 

  13. Lu XJ, Xiang ZD (2017) Formation of chromium nitride coatings on carbon steels by pack cementation process. Surf Coat Technol 309:994–1000. https://doi.org/10.1016/j.surfcoat.2016.10.047

    Article  CAS  Google Scholar 

  14. Goral M, Swadzba L, Moskal G, Jarczyk G, Aguilar J (2011) Diffusion aluminide coatings for TiAl intermetallic turbine blades. Intermetallics 19:744–747. https://doi.org/10.1016/j.intermet.2010.12.015

    Article  CAS  Google Scholar 

  15. Xiang ZD, Rose SR, Datta PK (2002) Pack codeposition of Al and Cr to form diffusion coatings resistant to high temperature oxidation and corrosion for γ-TiAl. Mater Sci Technol 18(12):1479–1484. https://doi.org/10.1179/026708302225007817

    Article  CAS  Google Scholar 

  16. Dai J, Zhu J, Chem C, Weng F (2016) High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: a review. J Alloys Compd 685:784–798. https://doi.org/10.1016/j.jallcom.2016.06.212

    Article  CAS  Google Scholar 

  17. Albayrak Ç, Hacısalihoğlu I, Yenal vangölü S, Alsaran A (2013) Tribocorrosion behavior of duplex treated pure titanium in Simulated Body Fluid. Wear 302:1642–1648. https://doi.org/10.1016/j.wear.2013.01.064

    Article  CAS  Google Scholar 

  18. Tsuji N, Tanaka SI, Takasugi T (2008) Evaluation of surface-modified Ti–6Al–4 V alloy by combination of plasma-carburizing and deeprolling. Mater Sci Eng A 488(1):139–145. https://doi.org/10.1016/j.msea.2007.11.079

    Article  CAS  Google Scholar 

  19. Everitt NM, Ding J, Bandak G, Shipway PH, Leen SB, Williams EJ (2009) Characterisation of fretting-induced wear debris for Ti-6Al-4 V. Wear 267(1–4):283–291. https://doi.org/10.1016/j.wear.2008.12.032

    Article  CAS  Google Scholar 

  20. Ma FC, Wang TR, Liu P, Li W, Lu WJ (2016) The mechanical behavior dependence on the TiB whisker realignment during hot-working in titanium matrix composites. Mater Sci Eng A 654:352–358. https://doi.org/10.1038/srep36126

    Article  CAS  Google Scholar 

  21. Maseko SW, Popoola API, Fayomi OSI (2018) Characterization of ceramic reinforced titanium matrix composites fabricated by spark plasma sintering for anti-ballistic applications. Def Technol 14:408–411. https://doi.org/10.1016/j.dt.2018.04.013

    Article  Google Scholar 

  22. Patel SK, Kuriachen B, Kumar N, Nateriya R (2018) The slurry abrasive wear behaviour and microstructural analysis of A2024- SiC-ZrSiO4 metal matrix composite. Ceram Int 44:6426–6432. https://doi.org/10.1016/j.ceramint.2018.01.037

    Article  CAS  Google Scholar 

  23. Visuttipitukul P, Limvanutpong N, Wangyao P (2010) Aluminizing of nickel-based superalloys grade IN 738 by powder liquid coating. Mat Trans 51:982–987. https://doi.org/10.2320/matertrans.m2009382

    Article  CAS  Google Scholar 

  24. Latief FH, Kakehi K, Sherif EM (2014) High temperature oxidation behavior of aluminide on a Ni-based single crystal superalloy in different surface orientations. Pro Nat Sci 24:163–170. https://doi.org/10.1016/j.pnsc.2014.03.006

    Article  CAS  Google Scholar 

  25. Javan MK, Moghaddam AA, Farvizi M, Abbasian AR, Shirvani K, Hadavi SMM, Rahimipour MR (2019) Effect of aluminum to alumina particles size ratio on the microstructural aspects of aluminide coatings by LTHA Pack Cementation. Mater Res Express 6(9):096–437. https://doi.org/10.1088/2053-1591/ab320f

    Article  CAS  Google Scholar 

  26. Laik A, Shirzadi AA, Sharma G, Tewari R, Jayakumar T, Dey GK (2015) Microstructure and interfacial reactions during vacuum brazing of stainless steel to titanium using Ag-28 pct Cu alloy. Metall and Mat Trans A 46:771–782. https://doi.org/10.1007/s11661-014-2671-9

    Article  CAS  Google Scholar 

  27. Lefaix-Jeuland H, Marchetti L, Perrin S, Pijolat M, Sennour M, Molins R (2011) Oxidation kinetics and mechanisms of Ni-base alloys in pressurised water reactor primary conditions: Influence of subsurface defects. Corros Sci 53(12):3914–3922. https://doi.org/10.1016/j.corsci.2011.07.024

    Article  CAS  Google Scholar 

  28. Lopez C, Kvryan A, Kasnakjian S, Coronado A, Sujittosakul S, Villalpando O, Ravi VA (2015) Effect of austenite stability on pack aluminizing of austenitic stainless steels. JOM 67(1):61–67. https://doi.org/10.1007/s11837-014-1238-y

    Article  CAS  Google Scholar 

  29. Mevrel R, Pichoir R (1987) Les revêtements par diffusion. Mater Sci Eng 88:1–9. https://doi.org/10.1016/0025-5416(87)90060-7

    Article  CAS  Google Scholar 

  30. Xiang D, Datta PK (2004) Pack aluminisation of low alloy steels at temperatures below 700 °C. Surf Coat Technol 184:108–115. https://doi.org/10.1016/j.surfcoat.2003.10.046

    Article  CAS  Google Scholar 

  31. Alontseva D, Krasavin A, Pogrebnjak A, Russakova A (2012) Modification of Ni-based plasma detonation coatings by a Low-energy DC E-beam. Proc IX Int Conf ION, Kazimierz Dolny, Poland 123:867–870. https://doi.org/10.12693/APhysPolA.123.867

    Article  CAS  Google Scholar 

  32. Guo C, Zhou J-S, Zhao J-R, Chen J-M (2011) Improvement of the tribological properties of pure Ti by laser cladding intermetallic compound composite coating. Proc IMechE Part J 225:864–874. https://doi.org/10.1177/1350650111409665

    Article  CAS  Google Scholar 

  33. Kobayashi S, Yakou T (2002) Control of intermetallic compound layers at interface between steeland aluminum by diffusion-treatment. Mat Sci Eng A-Struct 338:44–53. https://doi.org/10.1016/S0921-5093(02)00053-9

    Article  Google Scholar 

  34. Bailey R, Sun Y (2015) Pack carburisation of commercially pure titanium with limited oxygen diffusion for improved tribological properties. Surf Coat Technol 261:28–34. https://doi.org/10.1016/j.surfcoat.2014.11.071

    Article  CAS  Google Scholar 

  35. Maurer C, Schulz U (2013) Erosion resistant titanium based PVD coatings on CFRP. Wear 302:937–945. https://doi.org/10.1016/j.wear.2013.01.045

    Article  CAS  Google Scholar 

  36. Wang ZX, Wu HR, Shan XL, Lin NM, He ZY, Liu XP (2013) Microstructure and erosive wear behaviors of Ti6Al4V alloy treated by plasma Ni alloying. Wear 302:937–945. https://doi.org/10.1016/j.wear.2013.01.045

    Article  CAS  Google Scholar 

  37. Oka YI, Mihara SY, Yoshida T (2009) Impact-angle dependence and estimation of erosion damage to ceramic materials caused by solid particle impact. Wear 267:129–135. https://doi.org/10.1016/j.wear.2008.12.091

    Article  CAS  Google Scholar 

  38. Islam MdA, Farhat ZN (2014) Effect of impact angle and velocity on erosion of API X42 pipeline steel under high abrasive feed rate. Wear 311:180–190. https://doi.org/10.1016/j.wear.2014.01.005

    Article  CAS  Google Scholar 

  39. Wang ZX, Wu HR, Shan XL, Lin NM, He ZY, Liu XP (2016) Microstructure and erosive wear behaviors of Ti6Al4V alloy treated by plasma Ni alloying. Appl Surf Sci 388:510–516. https://doi.org/10.1016/j.apsusc.2015.10.231

    Article  CAS  Google Scholar 

  40. Hussainova I (2003) Effect of microstructure on the erosive wear of titanium carbide-based cermets. Wear 255:121–128. https://doi.org/10.1016/S0043-1648(03)00198-4

    Article  CAS  Google Scholar 

  41. Reshetnyak H, Kuybarsepp J (1994) Mechanical properties of hard metals and their erosive wear resistance. Wear 177:185–193. https://doi.org/10.1016/0043-1648(94)90244-5

    Article  CAS  Google Scholar 

  42. Divakar M, Agarwal VK, Singh SN (2005) Effect of the material surface hardness on the erosion of AISI 316. Wear 259:110–117. https://doi.org/10.1016/j.wear.2005.02.004

    Article  CAS  Google Scholar 

  43. Uzi A, Levy A (2018) Energy absorption by the particle and the surface during impact. Wear 404–405:92–110. https://doi.org/10.1016/j.wear.2018.03.007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ghouss.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghouss, H., Boudebane, S. Effects of Substrate Composition and Treatment Times on the Erosive Wear of Titanium Aluminide Coating: Prepared By Pack Cementation. J Bio Tribo Corros 7, 3 (2021). https://doi.org/10.1007/s40735-020-00438-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-020-00438-8

Keywords

Navigation