Skip to main content
Log in

Anticorrosion Activity of a Polyacrylamide with High Molecular Weight on C-Steel in Acidic Media: Part 1

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

The chemical structure of a polyacrylamide (PA), synthesized by inverse emulsion polymerization, was confirmed by FTIR and 1H NMR. The experimental conditions were conducted to produce high molecular weight of 1.4 × 106 g mol−1 determined by both gel permeation chromatography and viscosity average molecular weight methods. The efficiency of PA was evaluated, on corrosion inhibition of C-steel in 1.0 M HCl solution, by means of electrochemical impedance spectroscopy, potentiodynamic polarization (PP), and mass-loss (ML) measurements, and a very good concordance was obtained from the three techniques. The inhibiting efficiency increased up to 4 × 10−6 mol L−1 and dropped down afterward. The PP curves revealed that PA was of mixed-type, influencing predominantly the anodic process. The electrochemical interface was satisfactorily modeled with the electrical circuit (RS + Qdl/Rct) using CPE(α,Q) reflecting one-time constant. This fact, testifying the dominant character of charge transfer control of the C-steel corrosion process, was well described in both Nyquist along with Bode diagrams which take into account the frequency dependence, justifying the suitable choice of the electrical circuit. The adsorption of PA involved both physical and chemical interactions of non-protonated and protonated molecules with a deeper discussion on the suitable sites of protonation. The performance of PA was maintained if not slightly ameliorated in a more aggressive medium such as 0.5 M H2SO4 at 298 K. Two-time constants were needed to model the electrochemical interface (RS + Qdl/(Rct + RL/L)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Kowalski D, Ueda M, Ohtsukat T (2007) The effect of counter anions on corrosion resistance of steel covered by bi-layered polypyrrole film. Corros Sci 49:3442–3452. https://doi.org/10.1016/j.corsci.2007.03.007

    Article  Google Scholar 

  2. Jeyaprabha C, Sathiyanarayanan S, Venkatachari G (2006) Polyaniline as corrosion inhibitor for iron in acid solutions. J Appl Polym Sci 101:2144–2153. https://doi.org/10.1002/app.22579

    Article  Google Scholar 

  3. Elbakari M, Touir R, Ebn Touhami M, Srhiri A, Benmessaoud M (2008) Electrosynthesis of adherent poly(3-amino-1,2,4-triazole) films on brass prepared in nonaqueous solvents. Corros Sci 50:1538–1545. https://doi.org/10.1016/j.corsci.2008.02.014

    Article  Google Scholar 

  4. Lehr IL, Saidman SB (2007) Corrosion protection of iron by polypyrrole coatings electrosynthesised from a surfactant solution. Corros Sci 49:2210–2225. https://doi.org/10.1016/j.corsci.2006.10.033

    Article  Google Scholar 

  5. Migahed MA, Aly RO, Al-Sabagh AM (2004) Impact of gamma-ray-pre-irradiation on the efficiency of corrosion inhibition of some novel polymeric surfactants. Corros Sci 46:2503–2516. https://doi.org/10.1016/j.corsci.2004.01.013

    Article  Google Scholar 

  6. Titz T, Horzenberger F, Bergh KVD, Grundmeier G (2010) Correlation of interfacial electrode potential and corrosion resistance of plasma polymer coated galvanized steel. Part 1: ultra-thin plasma polymer films of varying thickness. Corros Sci 52:369–377. https://doi.org/10.1016/j.corsci.2009.09.024

    Article  Google Scholar 

  7. Umoren SA, Ogbobe O, Okafor PC, Ebenso EE (2007) Polyethylene glycol and polyvinyl alcohol as corrosion inhibitors for aluminium in acidic medium. J Appl Polym Sci 105:3363–3370. https://doi.org/10.1002/app.26530

    Article  Google Scholar 

  8. Umoren SA, Obot IB (2008) Polyvinylpyrollidone and polyacrylamide as corrosion inhibitors for mild steel in acidic medium. Surf Rev Lett 15:277–286. https://doi.org/10.1142/S0218625X08011366

    Article  Google Scholar 

  9. Umoren SA, Lia Y, Wang FH (2010) Electrochemical study of corrosion inhibition and adsorption behaviour for pure iron by polyacrylamide in H2SO4: synergistic effect of iodide ions. Corros Sci 52:1777–1786. https://doi.org/10.1016/j.corsci.2010.01.026

    Article  Google Scholar 

  10. Umoren SA, Solomon MM (2010) Effect of halide ions additives on the corrosion inhibition of aluminum in HCl by polyacrylamide. Arab J Sci Eng 35(2):115. https://www.researchgate.net/publication/259284202

  11. Umoren SA, Li Y, Wang FH (2011) Influence of iron microstructure on the performance of polyacrylic acid as corrosion inhibitor in sulfuric acid solution. Corros Sci 53:1778–1785. https://doi.org/10.1016/j.corsci.2011.01.052

    Article  Google Scholar 

  12. Chamovska D, Cvetkovska M, Grchev T (2007) Corrosion inhibition of iron in hydrochloric acid by polyacrylamide. J Serb Chem Soc 72(7):687–698

    Article  Google Scholar 

  13. Manimaran N, Rajendran S, Manivannan M, John Mary S (2012) Corrosion inhibition of carbon steel by polyacrylamide. Res J Chem Sci 2(3):52–57. http://www.isca.in (ISSN 2231-606X)

  14. Srivastava V, Banerjee S, Singh MM (2010) Inhibitive effect of polyacrylamide grafted with fenugreek mucilage on corrosion of mild steel in 0.5 M H2SO4 at 35 °C. J Appl Polym Sci 116(2):810–816. https://doi.org/10.1002/app.31559

    Google Scholar 

  15. Amin MA, Abd EI-Rehim SS, El-Sherbini Essam EF, Hazzazi OA, Abbas Mohsen N (2009) Polyacrylic acid as a corrosion inhibitor for aluminium in weakly alkaline solutions. Part I: weight loss, polarization, impedance EFM and EDX studies. Corros Sci 51:658–667. https://doi.org/10.1016/j.corsci.2008.12.008

    Article  Google Scholar 

  16. Finšgar M, Fassbender S, Nicolini F, Milošev I (2009) Polyethyleneimine as a corrosion inhibitor for ASTM 420 stainless steel in near-neutral saline media. Corros Sci 51:525–533. https://doi.org/10.1016/j.corsci.2008.12.006

    Article  Google Scholar 

  17. Gupta G, Birbilis N, Khanna (2013) Polyaniline-lignosulfonate/epoxy coating for corrosion protection of AA2024-T3. Corros Sci 67:256–267. https://doi.org/10.1016/j.corsci.2012.10.022

    Article  Google Scholar 

  18. Arthur DE, Jonathan A, Ameh PO, Anya C (2013) A review on the assessment of polymeric materials used as corrosion inhibitor of metals and alloys. Int J Ind Chem 4:2–9. https://doi.org/10.1186/2228-5547-4-2

    Article  Google Scholar 

  19. Saliyan, VR, Adhikari AV (2008) Inhibition of corrosion of mild steel in acid media by N′-benzylidene-3-(quinolin-4-ylthio)propanohydrazide. Bull Mater Sci 31:699–711. https://doi.org/10.1007/s12034-008-0111-4

    Article  Google Scholar 

  20. Benabdellah M, Ousslim A, Hammouti B, Elidrissi A, Aouniti A, Dafali A, Bekkouch K, Benkaddour M (2007) The effect of poly(vinyl caprolactone-co-vinyl pyridine) and poly(vinyl imidazol-co-vinyl pyridine) on the corrosion of steel in H3PO4 media. J Appl Electrochem 37:819–826. https://doi.org/10.1007/s10800-007-9317-1

    Article  Google Scholar 

  21. Müller LB, Schmelich T (1995) High-molecular weight styrene maleic acid copolymers as corrosion inhibitors for aluminium pigments. Corros Sci 37:877–883. https://doi.org/10.1016/0010-938X(94)00171-2

    Article  Google Scholar 

  22. Bereket G, Yurt A, Turk H (2003) Inhibition of corrosion of low carbon steel in acidic solution by selected polyelectrolytes and polymers. Anti-Corros Methods Mater 50:422–435. https://doi.org/10.1108/00035590310501585

    Article  Google Scholar 

  23. Shukla SK, Quraishi MA, Prakash R (2008) A self-doped conducting polymer polyanthranilic acid an efficient corrosion inhibitor for mild steel in acidic solution. Corros Sci 50:2867–2872. https://doi.org/10.1016/j.corsci.2008.07.025

    Article  Google Scholar 

  24. Ren Y, Luo Y, Zhang K, Zhu G, Tan X (2008) Lignin terpolymer for corrosion inhibition of mild steel in 10% hydrochloric acid medium. Corros Sci 50:3147–3153. https://doi.org/10.1016/j.corsci.2008.08.019

    Article  Google Scholar 

  25. Solomon MM, Umoren SA, Udosoro II, Udoh AP (2010) Inhibitive and adsorption behaviour of carboxymethyl cellulose on mild steel corrosion in sulphuric acid solution. Corros Sci 52:1317–1325. https://doi.org/10.1016/j.corsci.2009.11.041

    Article  Google Scholar 

  26. Bhandari H, Srivastav R, Choudhary V, Dhawan SK (2010) Enhancement of corrosion protection efficiency of iron by poly(aniline-co-amino-naphthol-sulphonic acid) nanowires coating in highly acidic medium. Thin Solid Films 519:1031–1039. https://doi.org/10.1016/j.tsf.2010.08.038

    Article  Google Scholar 

  27. Yurt A, Buetuen V, Duran B (2007) Effect of the molecular weight and structure of some novel water-soluble triblock copolymers on the electrochemical behaviour of mild steel. Mater Chem Phys 105:114–121. https://doi.org/10.1016/j.matchemphys.2007.04.009

    Article  Google Scholar 

  28. Abd El-Maksoud SA, Fouda AS (2005) Some pyridine derivatives as corrosion inhibitors for carbon steel in acidic medium. Mater Chem Phys 93:84–90. https://doi.org/10.1016/j.matchemphys.2005.02.020

    Article  Google Scholar 

  29. Rajendran S, Sridevi SP, Anthony N, John Amalraji A, Sundaravadivedi M (2005) Corrosion behavior of carbon steel in polyvinyl alcohol. Anti-Corros Methods Mater 52:102–107. https://doi.org/10.1108/00035590510584816

    Article  Google Scholar 

  30. Jeyaprabha C, Sathiyanarayanan S, Phani KLN, Venkatachari G (2005) Influence of poly(aminoquinone) on corrosion inhibition of iron in acid media. Appl Surf Sci 252:966–975. https://doi.org/10.1016/j.apsusc.2005.01.098

    Article  Google Scholar 

  31. Small PA (1953) Some factors affecting the solubility of polymers. J Appl Chem 3:71–80. https://doi.org/10.1002/jctb.5010030205

    Article  Google Scholar 

  32. Mohsin MA, Attia NF (2015) Inverse emulsion polymerization for the synthesis of high molecular weight polyacrylamide and its application as sand stabilizer. Int J Polym Sci. https://doi.org/10.1155/2015/436583

    Google Scholar 

  33. Fraenkel G, Niemann C (1958) The mode of protonation of amides. Proc Natl Acad Sci USA 44(7):688–691

    Article  Google Scholar 

  34. Morad MS (2008) Inhibition of iron corrosion in acid solutions by Cefatrexy: behaviour near and at the corrosion potential. Corros Sci 50:436–448. https://doi.org/10.1016/j.corsci.2007.08.018

    Article  Google Scholar 

  35. Bentiss F, Jama C, Mernari B, El Attari H, El Kadi L, Lebrini M, Traisnel M, Lagrenée M (2009) Inhibition of iron corrosion in acid solutions by Cefatrexyl: behaviour near and at the corrosion potential. Corros Sci 51:1628–1635. https://doi.org/10.1016/j.corsci.2009.04.009

    Article  Google Scholar 

  36. Bentrah H, Rahali Y, Chala A (2014) Gum Arabic as an eco-friendly inhibitor for API 5L X42 pipeline steel in HCl medium. Corros Sci 82:426–431. https://doi.org/10.1016/j.corsci.2013.12.018

    Article  Google Scholar 

  37. Soltani N, Tavakkoli N, Khayatkashani M, Jalali MR, Mosavizade A (2012) Green approach to corrosion inhibition of 304 stainless steel in hydrochloric acid solution by the extract of saliva officinalis leaves. Corros Sci 62:122–135. https://doi.org/10.1016/j.corsci.2012.05.003

    Article  Google Scholar 

  38. Afia L, Salghi R, Bammou L, Hammouti B, Bazzi L, Bouyanzer A (2014) Anti-corrosive properties of Argan oil on C38 steel in molar HCl solution. J Saudi Chem Soc 18:19–25. https://doi.org/10.1016/j.jscs.2011.05.008

    Article  Google Scholar 

  39. Zarrouk A, Zarrok H, Salghi R, Hammouti B, Bentiss F, Touir R, Bouachrine M (2013) Evaluation of N-containing organic compound as corrosion inhibitor for carbon steel in phosphoric acid. J Mater Environ Sci 4(2):177–192 (ISSN 2028-2508 CODEN: JMESCN)

    Google Scholar 

  40. Bentiss F, Traisnel M, Vezin H, Hildebrand HF, Lagrenée M (2004) 2,5-Bis(4-dimethylaminophenyl)-1,3,4-oxadiazole and 2,5-bis(4-dimethylaminophenyl)-1,3,4-thiadiazole as corrosion inhibitors for mild steel in acidic media. Corros Sci 46:2781–2792. https://doi.org/10.1016/j.corsci.2004.04.001

    Article  Google Scholar 

  41. Qian B, Wang J, Zheng M, Hou B (2013) Synergistic effect of polyaspartic acid and iodide ion on corrosion inhibition of mild steel in H2SO4. Corros Sci 75:184–192. https://doi.org/10.1016/j.corsci.2013.06.001

    Article  Google Scholar 

  42. Zerga B, Hammout Bi, Ebn Touhami M, Touir R, Taleb M, Sfaira M, Bennajeh M, Forssal I (2012) Comparative inhibition study of new synthesized pyridazine derivatives towards mild steel corrosion in hydrochloric acid. Part-II: thermodynamic proprieties. Int J Electrochem Sci 7:471–483. http://www.electrochemsci.org/papers/vol7/7010471.pdf

  43. Solmaz R (2010) Investigation of the inhibition effect of 5-((E)-4-phenylbuta-1, 3-dienylideneamino)-1, 3, 4-thiadiazole-2-thiol Schiff base on mild steel corrosion in hydrochloric acid. Corros Sci 52:3321–3330. https://doi.org/10.1016/j.corsci.2010.06.001

    Article  Google Scholar 

  44. Znini M, Cristofari G, Majidi L, Ansari A, Bouyanzer A, Paolini J, Costa J, Hammouti B (2012) Green approach to corrosion inhibition of mild steel by essential oil leaves of Asteriscus graveolens (Forssk.) in sulphuric acid medium. Int J Electrochem Sci 7:3959–3981. http://www.electrochemsci.org/papers/vol7/7053959.pdf

  45. Bentiss F, Outirite M, Traisnel M, Vezin H, Lagrenée M, Hammouti B, Al-Deyab SS, Jama C (2012) Improvement of corrosion resistance of carbon steel in hydrochloric acid medium by 3,6-bis(3-pyridyl)pyridazine. Int J Electrochem Sci 7:1699–1723. http://www.electrochemsci.org/papers/vol7/7021699.pdf

  46. Wang J, Cao C, Chen J, Zhang M, Ye G, Lin H (1995) Anodic desorption of inhibitors. J Chin Soc Corros Prot 15:241–248. http://www.jcscp.org/EN/Y1995/V15/I4/241

  47. Feng Y, Siow KS, Teo WK, Hsieh AK (1999) The synergistic effects of propargyl alcohol and potassium iodide on the inhibition of mild steel in 0.5 M sulfuric acid solution. Corros Sci 41:829–852. https://doi.org/10.1016/S0010-938X(98)00144-9

    Article  Google Scholar 

  48. Behpour M, Ghoreishi SM, Mohammadi N, Soltani N, Salavati-Niasari M (2010) Investigation of some Schiff base compounds containing disulfide bond as HCl corrosion inhibitors for mild steel. Corros Sci 52:4046–4057. https://doi.org/10.1016/j.corsci.2010.08.020

    Article  Google Scholar 

  49. Ramananda MS (2013) A green Approach: a corrosion inhibition of mild steel by adhatoda vasica plant extract in 0.5 M H2SO4. J Mater Environ Sci 4:119–126 (ISSN 2028-2508 CODEN: JMESCN)

    Google Scholar 

  50. Gualdrón AF, Becerra EN, Peña DY, Gutiérrez JC, Becerra HQ (2013) Inhibitory effect of Eucalyptus and Lippia alba essential oils on the corrosion of mild steel in hydrochloric acid. J Mater Environ Sci 4:143–158 (ISSN 2028-2508 CODEN: JMESCN)

    Google Scholar 

  51. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics. I. Alternating current characteristics. J Chem Phys 9:341–351. https://doi.org/10.1063/1.1750906

    Article  Google Scholar 

  52. Duval S, Keddam M, Sfaira M, Srhiri A, Hakenouti H (2002) Electrochemical impedance spectroscopy of epoxy-vinyl coating in aqueous medium analyzed by dipolar relaxation of polymer. J Electrochem Soc 149:B520–B529. https://doi.org/10.1149/1.1512667

    Article  Google Scholar 

  53. Davidson DW, Cole RH (1951) Dielectric relaxation in glycerol, propylene glycol, and n-propanol. J Chem Phys 19:1484–1490. https://doi.org/10.1063/1.1748105

    Article  Google Scholar 

  54. Juttner K (1990) Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces. Electrochim Acta 35(90):1501–1508. https://doi.org/10.1016/0013-4686(90)80004-8

    Article  Google Scholar 

  55. Deflorain F, Miscovic-Stankovic VB, Bonora PL, Fedrizzi L (1994) Degradation of epoxy coatings on phosphatized zinc-electroplated steel. Corrosion 50:438–446. https://doi.org/10.5006/1.3293522

    Article  Google Scholar 

  56. Bentiss F, Traisnel M, Gengembre L, Lagrenée M (1999) A new triazole derivative as inhibitor of the acid corrosion of mild steel: electrochemical studies, weight loss determination, SEM and XPS. Appl Surf Sci 152:237–249. https://doi.org/10.1016/S0169-4332(99)00322-0

    Article  Google Scholar 

  57. Bentiss F, Traisnel M, Lagrenée M (2000) Inhibitor effects of triazole derivatives on corrosion of mild steel in acidic media. Br Corros J 35:315–320. https://doi.org/10.1179/000705900101501326

    Article  Google Scholar 

  58. Schultze JW, Wippermann K (1987) Inhibition of electrode processes on copper by AHT in acid solutions. Electrochim Acta 32:823–831. https://doi.org/10.1016/0013-4686(87)85115-0

    Article  Google Scholar 

  59. Jovic VD, Jovic BM BM (2003)EIS and differential capacitance measurements onto single crystal faces in different solutions. Part I: Ag(111) in 0.01 M NaCl. J Electroanal Chem 541:1–11. https://doi.org/10.1016/S0022-0728(02)01309-8

    Article  Google Scholar 

  60. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of the scientific computing, 2nd edn. Cambridge University Press, New York. ISBN 0-521-43108-5

    Google Scholar 

  61. Barsoukov E, Ross Macdonald J (2005) Impedance spectroscopy: theory, experiment and applications, 2nd edn. Wiley, New York. ISBN 978-0-471-64749-2

    Book  Google Scholar 

  62. Zarrok H, Zarrouk A, Hammouti B, Salghi R, Jama C, Bentiss F (2012) Corrosion control of carbon steel in phosphoric acid by purpald-weight loss, electrochemical and XPS studies. Corros Sci 64:243–252. https://doi.org/10.1016/j.corsci.2012.07.018

    Article  Google Scholar 

  63. Popova A, Christov M, Vasilev A (2007) Inhibitive properties of quaternary ammonium bromides of N-containing heterocycles on acid mild steel corrosion. Part II: EIS results. Corros Sci 49:3290–3302. https://doi.org/10.1016/j.corsci.2007.03.012

    Article  Google Scholar 

  64. Yadav FK, Quraishi MA, Maiti B (2012) Inhibition effect of some benzylidenes on mild steel in 1 M HCl: an experimental and theoretical correlation. Corros Sci 55:254–266. https://doi.org/10.1016/j.corsci.2011.10.030

    Article  Google Scholar 

  65. Lorenz WJ, Mansfeld F (1981) Determination of corrosion rates by electrochemical. DC and AC methods. Corros Sci 21:647–672. https://doi.org/10.1016/0010-938X(81)90015-9

    Article  Google Scholar 

  66. Bentiss F, Traisnel M, Lagrenée M (2001) Influence of 2,5-bis(4-dimethylaminophenyl)-1,3,4-thiadiazole on corrosion inhibition of mild steel in acidic media. J Appl Electrochem 31:41–48. https://doi.org/10.1023/A:1004141309795

    Article  Google Scholar 

  67. Muralidharan S, Phani KLN, Pitchumani S, Ravichandran S, Iyer SVK (1995) Polyamino–benzoquinone polymers: a new class of corrosion inhibitors for mild steel. J Electrochem Soc 142:1478–1483. https://doi.org/10.1149/1.2048599

    Article  Google Scholar 

Download references

Funding

This study was supported by BENIKEN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Beniken.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beniken, M., Driouch, M., Sfaira, M. et al. Anticorrosion Activity of a Polyacrylamide with High Molecular Weight on C-Steel in Acidic Media: Part 1. J Bio Tribo Corros 4, 38 (2018). https://doi.org/10.1007/s40735-018-0155-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-018-0155-y

Keywords

Navigation