Skip to main content
Log in

Repeated Acquisition in the Morris Swim Task: Effects of Methylenedioxymethamphetamine, Methamphetamine, and Methylphenidate

  • Original Article
  • Published:
The Psychological Record Aims and scope Submit manuscript

Abstract

Acute effects of methylenedioxymethamphetamine (MDMA), methamphetamine (MA), and methylphenidate (MPD) were studied using a within-subject, repeated acquisition/performance procedure adapted to the Morris swim task. To investigate place-learning, the acquisition component consisted of a hidden platform that varied in location across experimental sessions. As a control for drug effects not specific to acquisition, a performance component was included in which the hidden platform was in the same pool location in every experimental session. All three drugs increased escape latencies and swim distances in a dose-dependent fashion. However, impairment in the acquisition component was generally observed only at doses that also produced impairment in the performance component, suggesting that effects were not selective to place learning. None of the drugs produced enhancement of learning or performance at any dose. Taken together, the results suggest that acute exposure to these psychomotor stimulants produce global impairment of performance in the Morris task, rather than specific deficits in place-learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arias-Cavieres, A., Rozas, C., Reyes-Parada, M., Barrera, N., Pancetti, F., & Loyola, S. (2010). MDMA (“ecstasy”) impairs learning in the Morris water maze and reduces hippocampal LTP in young rats. Neuroscience Letters, 469, 375–379.

    Article  PubMed  Google Scholar 

  • Baicy, K., & London, E. D. (2007). Corticolimbic dysregulation and chronic methamphetamine abuse. Addiction, 102(Suppl. 1), 5–15.

    Article  PubMed  Google Scholar 

  • Barch, D. M., & Carter, C. S. (2005). Amphetamine improves cognitive function in medicated individuals with schizophrenia and in healthy volunteers. Schizophrenia Research, 77, 43–58.

    Article  PubMed  Google Scholar 

  • Braida, D., Pozzi, M., Cavallini, R., & Sala, M. (2002). 3,4 methylenedioxymethamphetamine (ecstasy) impairs eight-arm radial maze performance and arm entry pattern in rats. Behavioral Neuroscience, 116, 298–304.

    Article  PubMed  Google Scholar 

  • Byrne, T., Baker, L. E., & Poling, A. (2000). MDMA and learning: Effects of acute and neurotoxic exposure in the rat. Pharmacology Biochemistry & Behavior, 66, 501–508.

    Article  Google Scholar 

  • Cain, D. P., Saucier, D., Hall, J., Hargreaves, E. L., & Boon, F. (1996). Detailed behavioral analysis of water maze acquisition under APV or CNQX: Contribution of sensorimotor disturbances to drug-induced acquisition deficits. Behavioral Neuroscience, 110, 86–102.

    Article  PubMed  Google Scholar 

  • Calhoun, W. H., & Jones, E. A. (1974). Methamphetamine’s effect on repeated acquisitions with serial discrimination reversals. Psychopharmacology, 39, 303–308.

    Article  Google Scholar 

  • Chuhan, Y. S., & Taukulis, H. K. (2006). Impairment of single-trial memory formation by oral methylphenidate in the rat. Neurobiology of Learning and Memory, 85, 125–131.

    Article  PubMed  Google Scholar 

  • Dudchenko, P. A. (2004). An overview of the tasks used to test working memory in rodents. Neuroscience & Biobehavioral Reviews, 28, 699–709.

    Article  Google Scholar 

  • Galizio, M., Keith, J. R., Mansfield, W., & Pitts, R. C. (2003). Repeated spatial acquisition: Effects of NMDA antagonists and morphine. Experimental and Clinical Psychopharmacology, 11, 79–90.

    Article  PubMed  Google Scholar 

  • Galizio, M., McKinney, P., Cerutti, D. T., & Pitts, R. C. (2009). Effects of MDMA, methamphetamine and methylphenidate on repeated acquisition and performance in rats. Pharmacology, Biochemistry & Behavior, 94, 305–311.

    Article  Google Scholar 

  • Handley, G. W., & Calhoun, W. H. (1978). The effects of methylphenidate on repeated acquisition of serial discrimination reversals. Psychopharmacology, 57, 115–117.

    Article  PubMed  Google Scholar 

  • Harper, D. N., Wisniewski, R., Hunt, M., & Schenk, S. (2005). (+/-) 3,4-methylene dioxymethamphetamine, d-amphetamine and cocaine impair delayed matching-to-sample performance via an increase in susceptibility to proactive interference. Behavioral Neuroscience, 119, 455–463.

    Article  PubMed  Google Scholar 

  • Harper, D. N., Hunt, M., & Schenk, S. (2006). Attenuation of the disruptive effects of (+/-) 3,4-methylene dioxymethamphetamine on delayed matching-to-sample performance in rats. Behavioral Neuroscience, 120, 201–205.

    Article  PubMed  Google Scholar 

  • Hart, C. L., Gunderson, E. W., Perez, A., Kirkpatrick, M. G., Thurmond, A., Comer, S. D., et al. (2008). Acute physiological and behavioral effects of intranasal methamphetamine in humans. Neuropsychopharmacology, 33, 1847–1855.

    Article  PubMed  Google Scholar 

  • Homer, B. D., Solomon, T. M., Moeller, R. W., Mascia, A., DeRaleau, L., & Halkitis, P. N. (2008). Methamphetamine abuse and impairment of social functioning: A review of the underlying neurophysiological causes and behavioral implications. Psychological Bulletin, 134, 301–310.

    Article  PubMed  Google Scholar 

  • Kay, C., Harper, D. N., & Hunt, M. (2010). Differential effects of MDMA and scopolamine on working versus reference memory in the radial arm maze task. Neurobiology of Learning and Memory, 93, 151–156.

    Article  PubMed  Google Scholar 

  • Keith, J. R., & Galizio, M. (1997). Acquisition in the Morris swim task is impaired by a benzodiazepine but not an NMDA antagonist: A new procedure for distinguishing acquisition and performance effects. Psychobiology, 25, 217–228.

    Google Scholar 

  • Keith, J. R., Pitts, R. C., Pezzuti, T., & Galizio, M. (2003). GABA-A modulator effects on a multiple-component, repeated-acquisition test of spatial learning. Behavioral Pharmacology, 14, 67–76.

    Article  Google Scholar 

  • Kirkpatrick, M. G., Gunderson, E. W., Perez, A. Y., Haney, M., Foltin, R. W., & Hart, C. L. (2012). A direct comparison of the behavioral and physiological effect of methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) in humans. Psychopharmacology, 219, 109–122.

    Article  PubMed Central  PubMed  Google Scholar 

  • Marston, H. M., Reid, M. E., Lawrence, J. A., Olverman, H. J., & Butcher, S. P. (1999). Behavioural analysis of the acute and chronic effects of MDMA treatment in the rat. Psychopharmacology, 144, 67–76.

    Article  PubMed  Google Scholar 

  • Mayorga, A. J., Popke, E. J., Fogle, C. M., & Paule, M. G. (2000). Similar effects of amphetamine and methylphenidate on the performance of complex operant tasks in rats. Behavioral Brain Research, 109, 59–68.

    Article  Google Scholar 

  • McCann, U. D., Kuwabara, H., Kumar, A., Palermo, M., Abbey, R., Brasic, J., et al. (2008). Persistent cognitive and dopamine transporter deficits in abstinent methamphetamine users. Synapse, 62, 91–100.

    Article  PubMed  Google Scholar 

  • Moerschbaecher, J. M., Boren, J. J., Schrot, J., & Simoes-Fontes, J. C. (1979). Effects of cocaine and d-amphetamine on the repeated acquisition and performance of conditional discriminations. Journal of the Experimental Analysis of Behavior, 31, 127–140.

    Article  PubMed Central  PubMed  Google Scholar 

  • Morris, R. G. M. (1981). Spatial localization does not require the presence of local cues. Learning and Motivation, 12, 39–260.

    Article  Google Scholar 

  • Nulsen, C. E., Fox, A. M., & Hammond, G. R. (2010). Differential effects of ecstasy on short-term and working memory: A meta-analysis. Neuropsychology Review, 20, 21–32.

    Article  PubMed  Google Scholar 

  • Padlubnaya, D., Galizio, M., Pitts, R. C., & Keith, J. (2005). Chlordiazepoxide interactions with scopolamine and dizocilpine: Novel cooperative and antagonistic effects on spatial learning. Behavioral Neuroscience, 119, 1331–1338.

    Article  PubMed  Google Scholar 

  • Quintero-Munoz, D., Saez-Briones, P., Diaz-Veliz, G., Mora-Gutierrez, S., Rebolledo-Fuentes, M., & Cassels, B. K. (2010). Behavioral profiles in rats distinguish among “ecstasy”, methamphetamine and 2,5-dimethoxy-4-iodoamphetamine: Mixed effects for “ecstasy” analogues. Behavioral Neuroscience, 124, 662–676.

    Article  Google Scholar 

  • Saucier, D., Hargreaves, E. L., Boon, F., Vanderwolf, C. H., & Cain, D. P. (1996). Detailed behavioral analysis of water maze acquisition under systemic NMDA or muscarinic antagonism: Nonspatial pretraining eliminates spatial learning deficits. Behavioral Neuroscience, 110, 103–116.

    Article  PubMed  Google Scholar 

  • Scott, J. C., Woods, S. P., Matt, G. E., Meyer, R. A., Heaton, R. K., Atkinson, J. H., et al. (2007). Neurocognitive effects of methamphetamine: A critical review and meta-analysis. Neuropsychology Review, 17, 275–297.

    Article  PubMed  Google Scholar 

  • Stough, C., King, R., Papafotiou, K., Swann, P., Ogden, E., Wesnes, K., et al. (2012). The acute effects of 3,4-methlenedioxymethamphetamine and d-methamphetamine on human cognitive functioning. Psychopharmacology, 220, 799–807.

    Article  PubMed  Google Scholar 

  • Thompson, D. M. (1976). Repeated acquisition of behavioral chains: Effects of methylphenidate and imipramine. Pharmacology, Biochemistry & Behavior, 6, 671–677.

    Article  Google Scholar 

  • Thompson, D. M., & Moerschbaecher, J. M. (1979a). Drug effects on repeated acquisition. In T. Thompson & P. B. Dews (Eds.), Advances in behavioral pharmacology (Vol. 2, pp. 229–259). New York: Academic Press.

    Google Scholar 

  • Thompson, D. M., & Moerschbaecher, J. M. (1979b). An experimental analysis of the effects of d-amphetamine and cocaine on the acquisition and performance of response chains in monkeys. Journal of the Experimental Analysis of Behavior, 32, 433–444.

    Article  PubMed Central  PubMed  Google Scholar 

  • Thompson, D. M., Winsauer, P. J., & Mastropaolo, J. (1987). Effects of phencyclidine, ketamine, and MDMA on complex operant behavior in monkeys. Pharmacology, Biochemistry & Behavior, 26, 401–405.

    Article  Google Scholar 

  • Tian, Y., Wang, Y., Deng, Y., & Maeda, K. (2009). Methylphenidate improves spatial memory of spontaneously hypertensive rats: Evidence in behavioral and ultrastructural changes. Neuroscience Letters, 461, 106–109.

    Article  PubMed  Google Scholar 

  • Zeise, M. L., Espinoza, S., Gonzalez, A., Cerda, F. S., Nacarate, J., Yanez, C. G., et al. (2007). Methylphenidate improves cue navigation in the Morris water maze in rats. Neuroreports, 18, 1059–1062.

    Article  Google Scholar 

  • Zhu, N., Weedon, J., & Dow-Edwards, D. L. (2007). Oral methylphenidate improves spatial learning and memory in pre- and periadolescent rats. Behavioral Neuroscience, 121, 1272–1279.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Galizio.

Additional information

The research was supported in part by grants DA12879 and DA029252 to Mark Galizio. The authors thank the following UNCW students who assisted in data collection and analysis: Shanna Baird, Erica Blackwell, Laura Bullard, Carol Dwan, Mitch Ferguson, Miles Hulick, Patrick McKinney, Laurence Miller, Shayna Nesbitt, and Jessie Ramsey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galizio, M., Byrd, B.D., Robinson, A.M. et al. Repeated Acquisition in the Morris Swim Task: Effects of Methylenedioxymethamphetamine, Methamphetamine, and Methylphenidate. Psychol Rec 64, 143–150 (2014). https://doi.org/10.1007/s40732-014-0023-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40732-014-0023-1

Keywords

Navigation