Skip to main content
Log in

Wastewater-Grown Algal Biomass as Carbon-neutral, Renewable, and Low Water Footprint Feedstock for Clean Energy and Bioplastics

  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Growing algae in wastewater offers carbon-neutral biomass production and pollutant removal. However, practical applications of wastewater-grown algal biomass have social acceptability issues in the food and feed industries due to unexpected threats (such as human/animal pathogens and toxins) associated with the wastewater-grown biomass. Therefore, considering the substantial pollutant removal potential of microalgae and the abundance of wastewater as a growth media, alternative bioprocessing routes of the wastewater-grown biomass should be developed. This review highlights some non-food and non-feed applications of wastewater-grown algae biomass.

Recent Findings

Wastewater-grown algal biomass contains high amounts of carbohydrates, proteins, and lipids depending upon the composition of wastewater and algal species grown. These three significant metabolites are precursors to bioenergy and biomaterial products such as bioethanol, biogas, and bioplastics. Hydrolysis of the wastewater-grown algal biomass can be easily improved to enhance the microbial fermentation yields to produce bioethanol and biobutanol. Fresh algal biomass, residual biomass, or both can be used as feedstocks in anaerobic digestion/co-digestion to produce biogas. Depending upon the selected species, wastewater-grown algal biomass can also produce biopolymers whose productivity depends on growth conditions, wastewater composition, and biopolymer synthesis method. Enzymatic, eco-friendly chemicals and mechanical approaches used to prepare biopolymers from algal biomass should be optimized for higher yields of biopolymers.

Summary

Although wastewater-grown biomass has acceptability issues, it offers certain environmental benefits, including atmospheric carbon capture, phycoremediation of pollutants, and water recycling. This manuscript highlights the recent progress and emerging trends of wastewater-grown algal biomass as a feedstock with potential applications for fermentation, anaerobic digestion, and bioprocessing to produce clean energy and bioplastics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of Importance •• Of more importance

  1. • Khan AZ, Malik S, Mehmood MA, Shahid A, Shahzad T, Zhao X-Q, et al. Two-stage algal cultivation for the biotransformation of urban wastewater’s pollutants into multiple bioproducts in a circular bioeconomy paradigm. Energy Convers Manage. 2022;273:116400. https://doi.org/10.1016/j.enconman.2022.116400. This paper highlights the two-stage cultivation of cyanobacterium in urban wastewater for biomass grown and their biomass cascade processing for pigments, lipids, and enzyme production. Other stage biomass is used as biofertilizer in the soil.

    Article  CAS  Google Scholar 

  2. • Malik S, Shahid A, Betenbaugh MJ, Liu C-G, Mehmood MA. A novel wastewater-derived cascading algal biorefinery route for complete valorization of the biomass to biodiesel and value-added bioproducts. Energy Convers Manage. 2022;256:115360. https://doi.org/10.1016/j.enconman.2022.115360. This paper highlights biomass production in urban wastewater and how biomass was processed in a cascade way for pigments and lipids extraction and enzyme production. Biomass was harvested using low-cost flocculants.

    Article  CAS  Google Scholar 

  3. Haider MN, Liu C-G, Tabish TA, Balakrishnan D, Show P-L, Qattan SYA, et al. Resource recovery of the wastewater-derived nutrients into algal biomass followed by its cascading processing to multiple products in a circular bioeconomy paradigm. Fermentation. 2022;8(11):650. https://doi.org/10.3390/fermentation8110650.

    Article  CAS  Google Scholar 

  4. • Shahid A, Khan AZ, Malik S, Liu C-G, Mehmood MA, Syafiuddin A, et al. Advances in green technologies for the removal of effluent organic matter from the urban wastewater. Current pollution reports. 2021;7(4):463–75. https://doi.org/10.1007/s40726-021-00203-6. The effects of effluent organic matter on wastewater treatment have been examined. The pros and cons of conventional, sophisticated, and biological effluent organic matter treatment methods have been discussed. Hybrid systems have been proposed to alleviate the drawbacks of standalone technology and enhance process efficiency. Future trends may include microalgae and cyanobacteria-based effluent organic matter removal and soil amendment.

    Article  CAS  Google Scholar 

  5. Shahid A, Khan AZ, Jabeen F, Liu CG, Asif M, Mehmood MA. Cyanobacteria-Based Biorefineries for a Sustainable Future of Bioindustry. In: Oncel SS, editor. A Sustainable Green Future. Cham: Springer; 2023. https://doi.org/10.1007/978-3-031-24942-6_24.

    Chapter  Google Scholar 

  6. Usman M, Amin M, Kamal I, Shahid A, Xu J, Alam MA, et al. Algae-mediated resource recovery from urban wastewater. Current pollution reports. 2023;9(2):243–58. https://doi.org/10.1007/s40726-023-00254-x.

    Article  CAS  Google Scholar 

  7. Lee S-A, Kim M, Kim H-S, Ahn C-Y. Extra benefit of microalgae in raw piggery wastewater treatment: pathogen reduction. Microbiome. 2022;10(1):142. https://doi.org/10.1186/s40168-022-01339-3.

    Article  CAS  Google Scholar 

  8. Karpagam R, Abinaya N, Gnanam R. Assortment of native microalgae for improved biomass and lipid production on employing vegetable waste as a frugal cultivation approach for biodiesel application. Curr Microbiol. 2021;78(10):3770–81. https://doi.org/10.1007/s00284-021-02643-1.

    Article  CAS  Google Scholar 

  9. Lee J-C, Moon K, Lee N, Ryu S, Song SH, Kim YJ, et al. Biodiesel production and simultaneous treatment of domestic and livestock wastewater using indigenous microalgae, Chlorella sorokiniana JD1-1. Sci Rep. 2023;13(1):15190. https://doi.org/10.1038/s41598-023-42453-y.

    Article  CAS  Google Scholar 

  10. Kurniawan SB, Ahmad A, Imron MF, Abdullah SRS, Othman AR, Hasan HA. Potential of microalgae cultivation using nutrient-rich wastewater and harvesting performance by biocoagulants/bioflocculants: mechanism, multi-conversion of biomass into valuable products, and future challenges. J Clean Prod. 2022;365:132806. https://doi.org/10.1016/j.jclepro.2022.132806.

    Article  CAS  Google Scholar 

  11. Tsolcha ON, Tekerlekopoulou AG, Akratos CS, Aggelis G, Genitsaris S, Moustaka-Gouni M, et al. Agroindustrial wastewater treatment with simultaneous biodiesel production in attached growth systems using a mixed microbial culture. Water. 2018;10(11):1693. https://doi.org/10.3390/w10111693.

    Article  CAS  Google Scholar 

  12. Hawrot-Paw M, Koniuszy A, Gałczyńska M, Zając G, Szyszlak-Bargłowicz J. Production of microalgal biomass using aquaculture wastewater as growth medium. Water. 2020;12(1):106. https://doi.org/10.3390/w12010106.

    Article  CAS  Google Scholar 

  13. Chan SS, Khoo KS, Chew KW, Ling TC, Show PL. Recent advances biodegradation and biosorption of organic compounds from wastewater: microalgae-bacteria consortium - a review. Biores Technol. 2022;344:126159. https://doi.org/10.1016/j.biortech.2021.126159.

    Article  CAS  Google Scholar 

  14. Ye Y, Ngo HH, Guo W, Chang SW, Nguyen DD, Zhang X, et al. Nutrient recovery from wastewater: from technology to economy. Bioresource technology reports. 2020;11:100425. https://doi.org/10.1016/j.biteb.2020.100425.

    Article  Google Scholar 

  15. Robles Á, Aguado D, Barat R, Borrás L, Bouzas A, Giménez JB, et al. New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the circular economy. Biores Technol. 2020;300:122673. https://doi.org/10.1016/j.biortech.2019.122673.

    Article  CAS  Google Scholar 

  16. Karpagam R, Jawaharraj K, Gnanam R. Review on integrated biofuel production from microalgal biomass through the outset of transesterification route: a cascade approach for sustainable bioenergy. Sci Total Environ. 2021;766:144236. https://doi.org/10.1016/j.scitotenv.2020.144236.

    Article  CAS  Google Scholar 

  17. •• Show P-L, Park Y-K, Al-Zuhair S, Ashokkumar V. Guest editorial: special issue on “microalgae biorefinery: current bottlenecks, challenges, and future directions.” Phytochem Rev. 2023;22(4):829–31. https://doi.org/10.1007/s11101-023-09881-0. No-sterile heterotrophic conditions are unsustainable for microalgae. Yeast removed nutrients well from non-sterile municipal effluent. Municipal wastewater treatment using crabtree-positive yeast-generated ethanol.

    Article  CAS  Google Scholar 

  18. Zafar Khan A, Haider MN, Zhao X-Q, Bai F-W, Musharraf SG, Ahmad N, et al. Evaluation of resource recovery potential of the Pseudoscillatoria coralii BERC01 under variable compositions of wastewater to produce biomass for cyanobacterium biorefinery. Sustainable Energy Technol Assess. 2022;54:102804. https://doi.org/10.1016/j.seta.2022.102804.

    Article  Google Scholar 

  19. •• Idris SN, Amelia TSM, Bhubalan K, Lazim AMM, Zakwan NAMA, Jamaluddin MI, et al. The degradation of single-use plastics and commercially viable bioplastics in the environment: a review. Environ Res. 2023;231:115988. https://doi.org/10.1016/j.envres.2023.115988. This work proposes an innovative microalgal integrated system to efficiently clean swine wastewater and create biofuels.

    Article  CAS  Google Scholar 

  20. Alias NH, Abdullah N, Othman NH, Marpani F, Zainol MM, Shayuti MSM. Sustainability Challenges and Future Perspectives of Biopolymer. In: Nadda AK, Sharma S, Bhat R, editors. Biopolymers. Springer, Cham: Springer Series on Polymer and Composite Materials; 2022. https://doi.org/10.1007/978-3-030-98392-5_17.

    Chapter  Google Scholar 

  21. Machado G, Santos F, Lourega R, Mattia J, Faria D, Eichler P, Auler A. Biopolymers from Lignocellulosic Biomass. In Lignocellulosic Biorefining Technologies (eds A.P. Ingle, A.K. Chandel and S.S. Silva). 2020. https://doi.org/10.1002/9781119568858.ch7.

  22. Bolaji I, Nejad B, Billham M, Mehta N, Smyth B, Cunningham E. Multi-criteria decision analysis of agri-food waste as a feedstock for biopolymer production. Resour Conserv Recycl. 2021;172:105671. https://doi.org/10.1016/j.resconrec.2021.105671.

    Article  CAS  Google Scholar 

  23. El-Dalatony MM, Sharma P, Hussein EE, Elnaggar AY, Salama E-S. Pig- and vegetable-cooked waste oils as feedstock for biodiesel, biogas, and biopolymer production. Biomass conversion and biorefinery. 2022. https://doi.org/10.1007/s13399-021-02281-4.

    Article  Google Scholar 

  24. Devadas VV, Khoo KS, Chia WY, Chew KW, Munawaroh HSH, Lam M-K, et al. Algae biopolymer towards sustainable circular economy. Biores Technol. 2021;325:124702. https://doi.org/10.1016/j.biortech.2021.124702.

    Article  CAS  Google Scholar 

  25. Arora Y, Sharma S, Sharma V. Microalgae in bioplastic production: a comprehensive review. Arab J Sci Eng. 2023;48(6):7225–41. https://doi.org/10.1007/s13369-023-07871-0.

    Article  CAS  Google Scholar 

  26. Shukla A, Kumar D, Girdhar M, Kumar A, Goyal A, Malik T, et al. Strategies of pretreatment of feedstocks for optimized bioethanol production: distinct and integrated approaches. Biotechnology for biofuels and bioproducts. 2023;16(1):44. https://doi.org/10.1186/s13068-023-02295-2.

    Article  CAS  Google Scholar 

  27. Narayanan M. Promising biorefinery products from marine macro and microalgal biomass: a review. Renew Sustain Energy Rev. 2024;190:114081. https://doi.org/10.1016/j.rser.2023.114081.

    Article  CAS  Google Scholar 

  28. Yirgu Z, Leta S, Hussen A, Khan MM. Pretreatment and optimization of reducing sugar extraction from indigenous microalgae grown on brewery wastewater for bioethanol production. Biomass conversion and biorefinery. 2023;13(8):6831–45. https://doi.org/10.1007/s13399-021-01779-1.

    Article  CAS  Google Scholar 

  29. Walls LE, Velasquez-Orta SB, Romero-Frasca E, Leary P, Yáñez Noguez I, Orta Ledesma MT. Non-sterile heterotrophic cultivation of native wastewater yeast and microalgae for integrated municipal wastewater treatment and bioethanol production. Biochem Eng J. 2019;151:107319. https://doi.org/10.1016/j.bej.2019.107319.

    Article  CAS  Google Scholar 

  30. Romero-Frasca E, Velasquez-Orta SB, Escobar-Sánchez V, Tinoco-Valencia R, Orta Ledesma MT. Bioprospecting of wild type ethanologenic yeast for ethanol fuel production from wastewater-grown microalgae. Biotechnol Biofuels. 2021;14(1):93. https://doi.org/10.1186/s13068-021-01925-x.

    Article  CAS  Google Scholar 

  31. Qu W, Loke Show P, Hasunuma T, Ho S-H. Optimizing real swine wastewater treatment efficiency and carbohydrate productivity of newly microalga Chlamydomonas sp QWY37 used for cell-displayed bioethanol production. Biores Technol. 2020;305:123072. https://doi.org/10.1016/j.biortech.2020.123072.

    Article  CAS  Google Scholar 

  32. Bhuyar P, Trejo M, Dussadee N, Unpaprom Y, Ramaraj R, Whangchai K. Microalgae cultivation in wastewater effluent from tilapia culture pond for enhanced bioethanol production. Water Sci Technol. 2021;84(10–11):2686–94. https://doi.org/10.2166/wst.2021.194.

    Article  CAS  Google Scholar 

  33. Tsolcha ON, Patrinou V, Economou CN, Dourou M, Aggelis G, Tekerlekopoulou AG. Utilization of biomass derived from cyanobacteria-based agro-industrial wastewater treatment and raisin residue extract for bioethanol production. Water. 2021;13(4):486. https://doi.org/10.3390/w10111693.

    Article  CAS  Google Scholar 

  34. Dhandayuthapani K, Sarumathi V, Selvakumar P, Temesgen T, Asaithambi P, Sivashanmugam P. Study on the ethanol production from hydrolysate derived by ultrasonic pretreated defatted biomass of Chlorella sorokiniana NITTS3. Chemical data collections. 2021;31:100641. https://doi.org/10.1016/j.cdc.2020.100641.

    Article  CAS  Google Scholar 

  35. Guo Y, Liu Y, Guan M, Tang H, Wang Z, Lin L, et al. Production of butanol from lignocellulosic biomass: recent advances, challenges, and prospects. RSC Adv. 2022;12(29):18848–63. https://doi.org/10.1039/D1RA09396G.

    Article  CAS  Google Scholar 

  36. Wang Y, Ho S-H, Yen H-W, Nagarajan D, Ren N-Q, Li S, et al. Current advances on fermentative biobutanol production using third generation feedstock. Biotechnol Adv. 2017;35(8):1049–59. https://doi.org/10.1016/j.biotechadv.2017.06.001.

    Article  CAS  Google Scholar 

  37. Kallarakkal KP, Muthukumar K, Alagarsamy A, Pugazhendhi A, Naina Mohamed S. Enhancement of biobutanol production using mixotrophic culture of Oscillatoria sp in cheese whey water. Fuel. 2021;284:119008. https://doi.org/10.1016/j.fuel.2020.119008.

    Article  CAS  Google Scholar 

  38. Tekin Nazlıhan, Karatay Sevgi Ertuğrul, Dönmez Gönül. Third generation biobutanol production by Clostridium beijerinckii in a medium containing mixotrophically cultivated Dunaliella salina biomass. Preparative Biochemistry & Biotechnology. 2023. https://doi.org/10.1080/10826068.2023.2248298.

    Article  Google Scholar 

  39. Wang Y, Ho S-H, Cheng C-L, Nagarajan D, Guo W-Q, Lin C, et al. Nutrients and COD removal of swine wastewater with an isolated microalgal strain Neochloris aquatica CL-M1 accumulating high carbohydrate content used for biobutanol production. Biores Technol. 2017;242:7–14. https://doi.org/10.1016/j.biortech.2017.03.122.

    Article  CAS  Google Scholar 

  40. •• Onay M. The effects of indole-3-acetic acid and hydrogen peroxide on Chlorella zofingiensis CCALA 944 for bio-butanol production. Fuel. 2020;273:117795. https://doi.org/10.1016/j.fuel.2020.117795. Chlorella zofingiensis grown in varied concentrations of municipal wastewater and Indole-3-acetic acid with hydrogen peroxide pre-treatment: bio-butanol content, yield, carbohydrate, protein, biomass concentration, biomass productivity, and specific growth curve.

    Article  CAS  Google Scholar 

  41. Solé-Bundó M, Passos F, Romero-Güiza MS, Ferrer I, Astals S. Co-digestion strategies to enhance microalgae anaerobic digestion: a review. Renew Sustain Energy Rev. 2019;112:471–82. https://doi.org/10.1016/j.rser.2019.05.036.

    Article  CAS  Google Scholar 

  42. Peng S, Colosi LM. Anaerobic Digestion of algae biomass to produce energy during wastewater treatment. Water Environ Res. 2016;88(1):29–39. https://doi.org/10.2175/106143014X14062131179195.

    Article  CAS  Google Scholar 

  43. Markou G, Ilkiv B, Brulé M, Antonopoulos D, Chakalis L, Arapoglou D, et al. Methane production through anaerobic digestion of residual microalgal biomass after the extraction of valuable compounds. Biomass Convers Biorefin. 2022;12(2):419–26. https://doi.org/10.1007/s13399-020-00703-3.

    Article  CAS  Google Scholar 

  44. Khan MI, Shin JH, Kim JD. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact. 2018;17(1):36. https://doi.org/10.1186/s12934-018-0879-x.

    Article  Google Scholar 

  45. Kant Bhatia S, Ahuja V, Chandel N, Gurav R, Kant Bhatia R, Govarthanan M, et al. Advances in algal biomass pretreatment and its valorisation into biochemical and bioenergy by the microbial processes. Biores Technol. 2022;358:127437. https://doi.org/10.1016/j.biortech.2022.127437.

    Article  CAS  Google Scholar 

  46. Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein JM, et al. Deep eutectic solvents: a review of fundamentals and applications. Chem Rev. 2021;121(3):1232–85. https://doi.org/10.1021/acs.chemrev.0c00385.

    Article  CAS  Google Scholar 

  47. Raj T, Morya R, Chandrasekhar K, Kumar D, Soam S, Kumar R, et al. Microalgae biomass deconstruction using green solvents: challenges and future opportunities. Biores Technol. 2023;369:128429. https://doi.org/10.1016/j.biortech.2022.128429.

    Article  CAS  Google Scholar 

  48. Mehariya S, Fratini F, Lavecchia R, Zuorro A. Green extraction of value-added compounds form microalgae: a short review on natural deep eutectic solvents (NaDES) and related pre-treatments. J Environ Chem Eng. 2021;9(5):105989. https://doi.org/10.1016/j.jece.2021.105989.

    Article  CAS  Google Scholar 

  49. El Achkar T, Greige-Gerges H, Fourmentin S. Basics and properties of deep eutectic solvents: a review. Environ Chem Lett. 2021;19(4):3397–408. https://doi.org/10.1007/s10311-021-01225-8.

    Article  CAS  Google Scholar 

  50. Ramos-Suárez JL, Carreras N. Use of microalgae residues for biogas production. Chem Eng J. 2014;242:86–95. https://doi.org/10.1016/j.cej.2013.12.053.

    Article  CAS  Google Scholar 

  51. Ganesh Saratale R, Kumar G, Banu R, Xia A, Periyasamy S, Dattatraya SG. A critical review on anaerobic digestion of microalgae and macroalgae and co-digestion of biomass for enhanced methane generation. Biores Technol. 2018;262:319–32. https://doi.org/10.1016/j.biortech.2018.03.030.

    Article  CAS  Google Scholar 

  52. Santos-Ballardo DU, Font-Segura X, Ferrer AS, Barrena R, Rossi S, Valdez-Ortiz A. Valorisation of biodiesel production wastes: anaerobic digestion of residual Tetraselmis suecica biomass and co-digestion with glycerol. Waste Manage Res. 2015;33(3):250–7. https://doi.org/10.1177/0734242x15572182.

    Article  CAS  Google Scholar 

  53. •• González-González LM, Astals S, Pratt S, Jensen PD, Schenk PM. Osmotic shock pre-treatment of Chaetoceros muelleri wet biomass enhanced solvent-free lipid extraction and biogas production. Algal Res. 2021;54:102177. https://doi.org/10.1016/j.algal.2020.102177. Wet microalgal biomass was pre-treated with osmotic shock to determine its potential for lipid extraction and biogas generation in an integrated system for Chaetoceros muelleri biodiesel and biogas production.

    Article  Google Scholar 

  54. de Oliveira MC, Bassin ID, Cammarota MC. Microalgae and cyanobacteria biomass pretreatment methods: a comparative analysis of chemical and thermochemical pretreatment methods aimed at methane production. Fermentation. 2022;8(10):497. https://doi.org/10.3390/fermentation8100497.

    Article  CAS  Google Scholar 

  55. Zhao B, Ma J, Zhao Q, Laurens L, Jarvis E, Chen S, et al. Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production. Biores Technol. 2014;161:423–30. https://doi.org/10.1016/j.biortech.2014.03.079.

    Article  CAS  Google Scholar 

  56. Capson-Tojo G, Torres A, Muñoz R, Bartacek J, Jeison D. Mesophilic and thermophilic anaerobic digestion of lipid-extracted microalgae N. gaditana for methane production. Renewable Energy. 2017;105:539–46. https://doi.org/10.1016/j.renene.2016.12.052.

    Article  CAS  Google Scholar 

  57. Ahmad A, Ashraf SS. Sustainable food and feed sources from microalgae: food security and the circular bioeconomy. Algal Res. 2023;74:103185. https://doi.org/10.1016/j.algal.2023.103185.

    Article  Google Scholar 

  58. Parimi NS, Singh M, Kastner JR, Das KC. Biomethane and biocrude oil production from protein extracted residual Spirulina platensis. Energy. 2015;93:697–704. https://doi.org/10.1016/j.energy.2015.09.041.

    Article  CAS  Google Scholar 

  59. Yellezuome D, Zhu X, Wang Z, Liu R. Mitigation of ammonia inhibition in anaerobic digestion of nitrogen-rich substrates for biogas production by ammonia stripping: a review. Renew Sustain Energy Rev. 2022;157:112043. https://doi.org/10.1016/j.rser.2021.112043.

    Article  CAS  Google Scholar 

  60. Yenigün O, Demirel B. Ammonia inhibition in anaerobic digestion: a review. Process Biochem. 2013;48(5):901–11. https://doi.org/10.1016/j.procbio.2013.04.012.

    Article  CAS  Google Scholar 

  61. Yukesh Kannah R, Kavitha S, Parthiba Karthikeyan O, Rene ER, Kumar G, Rajesh BJ. A review on anaerobic digestion of energy and cost effective microalgae pretreatment for biogas production. Biores Technol. 2021;332:125055. https://doi.org/10.1016/j.biortech.2021.125055.

    Article  CAS  Google Scholar 

  62. Nghiem LD, Koch K, Bolzonella D, Drewes JE. Full scale co-digestion of wastewater sludge and food waste: Bottlenecks and possibilities. Renew Sustain Energy Rev. 2017;72:354–62. https://doi.org/10.1016/j.rser.2017.01.062.

    Article  CAS  Google Scholar 

  63. Azarmanesh R, Zarghami Qaretapeh M, Hasani Zonoozi M, Ghiasinejad H, Zhang Y. Anaerobic co-digestion of sewage sludge with other organic wastes: a comprehensive review focusing on selection criteria, operational conditions, and microbiology. Chem Eng J Adv. 2023;14:100453. https://doi.org/10.1016/j.ceja.2023.100453.

    Article  CAS  Google Scholar 

  64. Meneses-Jácome A, Diaz-Chavez R, Velásquez-Arredondo HI, Cárdenas-Chávez DL, Parra R, Ruiz-Colorado AA. Sustainable energy from agro-industrial wastewaters in Latin-America. Renew Sustain Energy Rev. 2016;56:1249–62. https://doi.org/10.1016/j.rser.2015.12.036.

    Article  Google Scholar 

  65. Romero-Güiza MS, Vila J, Mata-Alvarez J, Chimenos JM, Astals S. The role of additives on anaerobic digestion: a review. Renew Sustain Energy Rev. 2016;58:1486–99. https://doi.org/10.1016/j.rser.2015.12.094.

    Article  CAS  Google Scholar 

  66. Schwede S, Kowalczyk A, Gerber M, Span R. Anaerobic co-digestion of the marine microalga Nannochloropsis salina with energy crops. Biores Technol. 2013;148:428–35. https://doi.org/10.1016/j.biortech.2013.08.157.

    Article  CAS  Google Scholar 

  67. Ramos-Suárez JL, Martínez A, Carreras N. Optimization of the digestion process of Scenedesmus sp. and Opuntia maxima for biogas production. Energy Convers Manag. 2014;88:1263–70. https://doi.org/10.1016/j.enconman.2014.02.064.

    Article  CAS  Google Scholar 

  68. El-Mashad HM. Kinetics of methane production from the codigestion of switchgrass and Spirulina platensis algae. Biores Technol. 2013;132:305–12. https://doi.org/10.1016/j.biortech.2012.12.183.

    Article  CAS  Google Scholar 

  69. Carminati P, Gusmini D, Pizzera A, Catenacci A, Parati K, Ficara E. Biogas from mono- and co-digestion of microalgal biomass grown on piggery wastewater. Water Sci Technol. 2018;78(1):103–13. https://doi.org/10.2166/wst.2018.134.

    Article  CAS  Google Scholar 

  70. Wang M, Lee E, Zhang Q, Ergas SJ. Anaerobic co-digestion of swine manure and microalgae Chlorella sp.: experimental studies and energy analysis. BioEnergy research. 2016;9(4):1204–15. https://doi.org/10.1007/s12155-016-9769-4.

    Article  Google Scholar 

  71. Mahdy A, Fotidis IA, Mancini E, Ballesteros M, González-Fernández C, Angelidaki I. Ammonia tolerant inocula provide a good base for anaerobic digestion of microalgae in third generation biogas process. Biores Technol. 2017;225:272–8. https://doi.org/10.1016/j.biortech.2016.11.086.

    Article  CAS  Google Scholar 

  72. Ameen F, Ranjitha J, Ahsan N, Shankar V. Co-digestion of microbial biomass with animal manure in three-stage anaerobic digestion. Fuel. 2021;306:121746. https://doi.org/10.1016/j.fuel.2021.121746.

    Article  CAS  Google Scholar 

  73. •• Astals S, Musenze RS, Bai X, Tannock S, Tait S, Pratt S, et al. Anaerobic co-digestion of pig manure and algae: Impact of intracellular algal products recovery on co-digestion performance. Biores Technol. 2015;181:97–104. https://doi.org/10.1016/j.biortech.2015.01.039. Experimental findings were utilized to build a high-level concept for an integrated biorefinery processing pig manure and onsite farmed algae, assessing methane output and co-product recovery per mass of manure.

    Article  CAS  Google Scholar 

  74. Fernández-Rodríguez MJ, Rincón B, Fermoso FG, Jiménez AM, Borja R. Assessment of two-phase olive mill solid waste and microalgae co-digestion to improve methane production and process kinetics. Biores Technol. 2014;157:263–9. https://doi.org/10.1016/j.biortech.2014.01.096.

    Article  CAS  Google Scholar 

  75. Passos F, Cordeiro PHM, Baeta BEL, de Aquino SF, Perez-Elvira SI. Anaerobic co-digestion of coffee husks and microalgal biomass after thermal hydrolysis. Biores Technol. 2018;253:49–54. https://doi.org/10.1016/j.biortech.2017.12.071.

    Article  CAS  Google Scholar 

  76. Arias DM, Solé-Bundó M, Garfí M, Ferrer I, García J, Uggetti E. Integrating microalgae tertiary treatment into activated sludge systems for energy and nutrients recovery from wastewater. Biores Technol. 2018;247:513–9. https://doi.org/10.1016/j.biortech.2017.09.123.

    Article  CAS  Google Scholar 

  77. Wang M, Sahu AK, Rusten B, Park C. Anaerobic co-digestion of microalgae Chlorella sp. and waste activated sludge. Biores Technol. 2013;142:585–90. https://doi.org/10.1016/j.biortech.2013.05.096.

    Article  CAS  Google Scholar 

  78. •• Avila R, Justo Á, Carrero E, Crivillés E, Vicent T, Blánquez P. Water resource recovery coupling microalgae wastewater treatment and sludge co-digestion for bio-wastes valorisation at industrial pilot-scale. Biores Technol. 2022;343:126080. https://doi.org/10.1016/j.biortech.2021.126080. A winery firm is integrating a microalgae-based system into its WWTP facilities to collect nutrients and convert them into value goods and bioenergy as part of a circular bioeconomy initiative.

    Article  CAS  Google Scholar 

  79. Chen B, Wan C, Mehmood MA, Chang J-S, Bai F, Zhao X. Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products–a review. Biores Technol. 2017;244:1198–206. https://doi.org/10.1016/j.biortech.2017.05.170.

    Article  CAS  Google Scholar 

  80. •• Costa SS, Miranda AL, Andrade BB, de Jesus AD, Souza CO, de Morais MG, et al. Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae. Int J Biol Macromol. 2018;116:552–62. https://doi.org/10.1016/j.ijbiomac.2018.05.064. This research examined how nitrogen availability affected cell growth, biomass composition, production, and polyhydroxyalkanoate characteristics in three microalgal strains.

    Article  CAS  Google Scholar 

  81. Rahman A, Putman RJ, Inan K, Sal FA, Sathish A, Smith T, et al. Polyhydroxybutyrate production using a wastewater microalgae based media. Algal Res. 2015;8:95–8. https://doi.org/10.1016/j.algal.2015.01.009.

    Article  Google Scholar 

  82. Mallick N, Gupta S, Panda B, Sen R. Process optimization for poly (3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer production by Nostoc muscorum. Biochem Eng J. 2007;37(2):125–30. https://doi.org/10.1016/j.bej.2007.04.002.

    Article  CAS  Google Scholar 

  83. Kavitha G, Kurinjimalar C, Sivakumar K, Kaarthik M, Aravind R, Palani P, et al. Optimization of polyhydroxybutyrate production utilizing waste water as nutrient source by Botryococcus braunii Kütz using response surface methodology. Int J Biol Macromol. 2016;93:534–42. https://doi.org/10.1016/j.ijbiomac.2016.09.019.

    Article  CAS  Google Scholar 

  84. Mendhulkar VD, Shetye LA. Synthesis of biodegradable polymer polyhydroxyalkanoate (PHA) in cyanobacteria Synechococcus elongates under mixotrophic nitrogen-and phosphate-mediated stress conditions. Ind Biotechnol. 2017;13(2):85–93. https://doi.org/10.1089/ind.2016.0021.

    Article  CAS  Google Scholar 

  85. Koch M, Forchhammer K. Polyhydroxybutyrate: a useful product of chlorotic cyanobacteria. Microb Physiol. 2021;31(2):67–77. https://doi.org/10.1159/000515617.

    Article  CAS  Google Scholar 

  86. •• Koch M, Berendzen KW, Forchhammer K. On the Role and Production of Polyhydroxybutyrate (PHB) in the Cyanobacterium Synechocystis sp. PCC 6803. Life. 2020;10(4):47. https://doi.org/10.3390/life10040047. PHB formation factors are described in this paper. The circumstances under which PHB is favorable during nitrogen deprivation are unknown. This research can assist generate strains with more PHB.

    Article  CAS  Google Scholar 

  87. Rueda E, Gonzalez-Flo E, Roca L, Carretero J, García J. Accumulation of polyhydroxybutyrate in Synechocystis sp isolated from wastewaters: effect of salinity, light, and P content in the biomass. J Environ Chem Eng. 2022;10(3):107952. https://doi.org/10.1016/j.jece.2022.107952.

    Article  CAS  Google Scholar 

  88. Singhon P, Phoraksa O, Incharoensakdi A, Monshupanee T. Increased bioproduction of glycogen, lipids, and poly(3-hydroxybutyrate) under partial supply of nitrogen and phosphorus by photoautotrophic cyanobacterium Synechocystis sp PCC 6803. J Appl Phycol. 2021;33(5):2833–43. https://doi.org/10.1007/s10811-021-02494-0.

    Article  CAS  Google Scholar 

  89. Pezzolesi L, Samorì C, Zoffoli G, Xamin G, Simonazzi M, Pistocchi R. Semi-continuous production of polyhydroxybutyrate (PHB) in the chlorophyta Desmodesmus communis. Algal Res. 2023;74:103196. https://doi.org/10.1016/j.algal.2023.103196.

    Article  Google Scholar 

  90. Grivalský T, Lakatos GE, Štěrbová K, Manoel JAC, Beloša R, Divoká P, et al. Poly-β-hydroxybutyrate production by Synechocystis MT_a24 in a raceway pond using urban wastewater. Appl Microbiol Biotechnol. 2024;108(1):44. https://doi.org/10.1007/s00253-023-12924-3.

    Article  CAS  Google Scholar 

  91. Rodríguez-Contreras A, Koller M, Miranda-de Sousa Dias M, Calafell-Monfort M, Braunegg G, Marqués-Calvo MS. High production of poly (3-hydroxybutyrate) from a wild Bacillus megaterium Bolivian strain. J Appl Microbiol. 2013;114(5):1378–87. https://doi.org/10.1111/jam.12151.

    Article  CAS  Google Scholar 

  92. • Kurian NS, Das B. Comparative analysis of various extraction processes based on economy, eco-friendly, purity and recovery of polyhydroxyalkanoate: a review. Int J Biol Macromol. 2021;183:1881–90. https://doi.org/10.1016/j.ijbiomac.2021.06.007. Nutrient-deficient medium with abundant carbon creates PHA. Bioplastic’s commercial usage relies on manufacturing costs. Non-PHA cell mass reduction is crucial to PHA extraction. Non-PHA cell removal by protons and biological digestion is an excellent PHA extraction procedure. PHA production may be increased via genetic engineering.

    Article  CAS  Google Scholar 

  93. Jiang G, Johnston B, Townrow DE, Radecka I, Koller M, Chaber P, et al. Biomass extraction using non-chlorinated solvents for biocompatibility improvement of polyhydroxyalkanoates. Polymers. 2018;10(7):731. https://doi.org/10.3390/polym10070731.

    Article  CAS  Google Scholar 

  94. Koller M. Established and advanced approaches for recovery of microbial polyhydroxyalkanoate (PHA) biopolyesters from surrounding microbial biomass. The EuroBiotech Journal. 2020;4(3):113–26. https://doi.org/10.2478/ebtj-2020-0013.

    Article  Google Scholar 

  95. Umesh M, Mamatha C. Comparitive study on efficacy of alkaline and acid extraction for PHA recovery from Bacillus subtilis NCDC0671. Int J Recent Sci Res. 2018;9:29467–71.

    Google Scholar 

  96. Costa SS, Miranda AL, de Morais MG, Costa JAV, Druzian JI. Microalgae as source of polyhydroxyalkanoates (PHAs) — a review. Int J Biol Macromol. 2019;131:536–47. https://doi.org/10.1016/j.ijbiomac.2019.03.099.

    Article  CAS  Google Scholar 

  97. Suzuki DV, Carter JM, Rodrigues MFA, da Silva ES, Maiorano AE. Purification of polyhydroxybutyrate produced by Burkholderia cepacia IPT64 through a chemical and enzymatic route. World J Microbiol Biotechnol. 2008;24(6):771–5. https://doi.org/10.1007/s11274-007-9537-x.

    Article  CAS  Google Scholar 

  98. Pérez-Rivero C, López-Gómez JP, Roy I. A sustainable approach for the downstream processing of bacterial polyhydroxyalkanoates: state-of-the-art and latest developments. Biochem Eng J. 2019;150:107283. https://doi.org/10.1016/j.bej.2019.107283.

    Article  CAS  Google Scholar 

  99. Macagnan KL, Alves MI, Moreira ADS. Approaches for Enhancing Extraction of Bacterial Polyhydroxyalkanoates for Industrial Applications. In: Kalia V, editor. Biotechnological Applications of Polyhydroxyalkanoates. Singapore: Springer; 2019. https://doi.org/10.1007/978-981-13-3759-8_15.

    Chapter  Google Scholar 

  100. Wilawan B, Chan S, Ling T, Show P-L, Ng E-P, Jonglertjunya W, et al. Advancement of carotenogenesis of astaxanthin from Haematococcus pluvialis: recent insight and way forward. Mol Biotechnol. 2023. https://doi.org/10.1007/s12033-023-00768-1.

    Article  Google Scholar 

  101. Samarasinghe N, Fernando S, Faulkner WB. Effect of high pressure homogenization on aqueous phase solvent extraction of lipids from Nannochloris oculata microalgae.. J  Energy Nat Resour. 2012;1(1):1–7. https://doi.org/10.11648/j.jenr.20120101.11.

    Article  Google Scholar 

  102. Osorio-Arias JC, Vega-Castro O, Martínez-Monteagudo SI. Fundamentals of high-pressure homogenization of foods. In Reference Module in Food Science. Amsterdam, The Netherlands: Elsevier BV; 2020.

    Google Scholar 

  103. Koller M, Niebelschütz H, Braunegg G. Strategies for recovery and purification of poly [(R)-3-hydroxyalkanoates](PHA) biopolyesters from surrounding biomass. Eng Life Sci. 2013;13(6):549–62. https://doi.org/10.1002/elsc.201300021.

    Article  CAS  Google Scholar 

  104. Jacquel N, Lo C-W, Wei Y-H, Wu H-S, Wang SS. Isolation and purification of bacterial poly (3-hydroxyalkanoates). Biochem Eng J. 2008;39(1):15–27. https://doi.org/10.1016/j.bej.2007.11.029.

    Article  CAS  Google Scholar 

  105. Dhankhar P. Homogenization fundamentals. IOSR. Journal of Engineering. 2014;4(5):8.

    Google Scholar 

  106. Dong T, Knoshaug EP, Pienkos PT, Laurens LML. Lipid recovery from wet oleaginous microbial biomass for biofuel production: a critical review. Appl Energy. 2016;177:879–95. https://doi.org/10.1016/j.apenergy.2016.06.002.

    Article  CAS  Google Scholar 

  107. Grimi N, Dubois A, Marchal L, Jubeau S, Lebovka NI, Vorobiev E. Selective extraction from microalgae Nannochloropsis sp using different methods of cell disruption. Biores Technol. 2014;153:254–9. https://doi.org/10.1016/j.biortech.2013.12.011.

    Article  CAS  Google Scholar 

  108. Xu K, Zou W, Peng B, Guo C, Zou X. Lipid droplets from plants and microalgae: characteristics, extractions, and applications. Biology. 2023;12(4):594. https://doi.org/10.3390/biology12040594.

    Article  CAS  Google Scholar 

Download references

Funding

The authors are thankful to the Higher Education Commission of Pakistan for supporting their various research projects.

Author information

Authors and Affiliations

Authors

Contributions

M.A.M., M.Amin. M. N. H. prepared the first draft of the manuscript. S.M. and H. A. M. prepared tables and figures. M. A.A., J.X., and A.H.A. reviewed and edited the manuscript. M.A.M., A.Z.K, and R.B. conceptualized the idea, and edited the final version of the manuscript. All authors reviewed and agreed for the submission.

Corresponding authors

Correspondence to Muhammad Aamer Mehmood, Aqib Zafar Khan or Raj Boopathy.

Ethics declarations

Conflict of Interest

There are no competing interests among the authors.

Human and Animal Rights and Informed Consent

This article did not involve any human or animal studies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Algae cultivation in wastewater offers biomass production, pollutant removal, and wastewater recycling.

• Industrial utilization of wastewater-grown biomass remains questionable and indeterminate.

• Alternative bioprocessing routes of wastewater-grown biomass should be developed.

• Fermentation of wastewater-grown biomass could be a promising option to produce fuel alcohols.

• Co-digestion of wastewater-grown biomass to biogas and biotransformation to biopolymers needs detailed studies.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehmood, M.A., Amin, M., Haider, M.N. et al. Wastewater-Grown Algal Biomass as Carbon-neutral, Renewable, and Low Water Footprint Feedstock for Clean Energy and Bioplastics. Curr Pollution Rep 10, 172–188 (2024). https://doi.org/10.1007/s40726-024-00294-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-024-00294-x

Keywords

Navigation