Skip to main content

Biomethanation Potential of Algal Biomass

  • Chapter
  • First Online:
Algal Biofuels

Abstract

For meeting the ever increasing demands of energy in domestic as well as industrial sector, biomethanation from algal biomass could be an environmentally sound option for promoting renewable and sustainable source of energy. Algae efficiently convert solar energy into biomass and therefore they can be a potential feedstock for biomethanation process. Utilizing algal feedstock has numerous benefits associated with it like they involve high energy yields, the process does not need biomass drying as it is wet fermentation, when co-digested with other substrate they can efficiently produce heat and electricity, etc. Several factors like algal cell wall composition and degradability, methane source in algae and its pretreatment affect the process of biomethanation. But, due to numerous technical constraints, low concentration of available digestible matter, and cell wall disruption, biomethanation from algal biomass could not gain importance as a feedstock. Though, through greater understanding and research activities these constraints can be overcome and biomethanation could achieve economic and environmental sustainability in near future. By optimizing the process, algal biomass as a feedstock could play a promising role in sustainable energy generation for future of clean energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alzate ME, Munoz R, Rogalla F, Fdz-Polanco F, Pérez-Elvira SI (2012) Biochemical methane potential of microalgae: influence of substrate to inoculum ratio, biomass concentration and pretreatment. Bioresour Technol 123:488–494

    Article  CAS  Google Scholar 

  • Anderson RC, Callaway TR, Van Kessel JAS, Jung YS, Edrington TS, Nisbet DJ (2003) Effect of select nitrocompounds on ruminal fermentation; an initial look at their potential to reduce economic and environmental costs associated with ruminal methanogenesis. Bioresour Technol 90(1):59–63

    Article  CAS  Google Scholar 

  • Andersen RA (ed) (2005) Algal culturing techniques. Phycological Society of America, Elsevier Academic, Amsterdam, p 578

    Google Scholar 

  • Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust 34:755–781

    Article  CAS  Google Scholar 

  • Appels L, Degrève J, Van der Bruggen B, Van Impe J, Dewil R (2010) Influence of low temperature thermal pretreatment on sludge solubilization, heavy metal release and anaerobic digestion. Bioresour Technol 101:5743–5748

    Article  CAS  Google Scholar 

  • Appels L, Lauwers J, Degrève J, Helsen L, Lievens B, Willems K, Van Impe J, Dewil R (2011) Anaerobic digestion in global bioenergy production: potential and research challenges. Renew Sust Energ Rev 15:4295–4301

    Article  CAS  Google Scholar 

  • Asinari Di San Marzano CM, Legros A, Naveau HP, Nyns EJ (1982) Biomethanation of the marine algae Tetraselmis. Int J Sustain Energy 1:263–272

    Google Scholar 

  • Batstone DJ et al (2002) The IWA anaerobic digestion model No 1 (ADM1). Water Sci Technol 45(10):65–73

    CAS  Google Scholar 

  • Becker EW (1994) Microalgae: biotechnology and microbiology, vol 10. Cambridge University Press, Cambridge

    Google Scholar 

  • Bruhn A, Dahl J, Nielsen HB, Nikolaisen L, Rasmussen MB, Markager S, Olesen B, Arias C, Jensen PD (2011) Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion. Bioresour Technol 102:2595–2604

    Article  CAS  Google Scholar 

  • Carlsson AS, Van Bilein JB, Möller R, Clayton D, Bowles D (2007) Outputs from EPOBIO project: micro—andmacroalgae utility for industrial application. CPL Press, York

    Google Scholar 

  • Carrere H, Dumas C, Battimelli A, Batstone DJ, Delgenès JP, Steyer JP, Ferrer I (2010) Pretreatment methods to improve sludge anaerobic degradability: a review. J Hazard Mater 183:1–18

    Article  CAS  Google Scholar 

  • Chen PH (1987) Factors influencing methane fermentation of micro-algae. PhD thesis, University of California, Berkeley

    Google Scholar 

  • Chen PH, Oswald WJ (1998) Thermochemical treatment for algal fermentation. Environ Int 24:889–897

    Article  CAS  Google Scholar 

  • Chen Y, Cheng JJ, Creame KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  CAS  Google Scholar 

  • Chynoweth DP, Owens JM, Legrand R (2001) Renewable methane from anaerobic digestion of biomass. Renew Energy 22:1–8

    Article  CAS  Google Scholar 

  • Collet P et al (2010) Life-cycle assessment of microalgae culture coupled to bigas production. Bioresour Technol 102:207–214

    Article  Google Scholar 

  • Converti A, Oliveira RPS, Torres BR, Lodi A, Zilli M (2009) Biogas production and valorization by means of a two-step biological process. Bioresour Technol 100:5771–5776

    Article  CAS  Google Scholar 

  • Costa JC, Gonçalves PR, Nobre A, Alves MM (2012) Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge. Bioresour Technol 114:320–326

    Article  CAS  Google Scholar 

  • De Schamphelaire L, Verstraete W (2009) Revival of the biological sunlight-to- biogas energy conversion system. Biotechnol Bioeng 103:296–304

    Article  CAS  Google Scholar 

  • Deublein D, Steinhauser A (2011) Biogas from waste and renewable resources: an introduction. Wiley, Weinheim, p. 4

    Google Scholar 

  • Fernandes TV, Keesman KJ, Zeeman G, Van Lier JB (2012) Effect of ammonia on the anaerobic hydrolysis of cellulose and tributyrin. Biomass Bioenergy 47:316–323

    Article  CAS  Google Scholar 

  • Ferrer I, Ponsa S, Vazquez F, Font X (2008) Increasing biogas production by thermal (70°C) sludge pretreatment prior to thermophilic anaerobic digestion. Biochem Eng 42:186–192

    Article  CAS  Google Scholar 

  • Gahlawat N, Harper L, Hendricks P, Okoye C, Pankow J, Serpico B (2009) Renewable energy and developing countries: the cases of India and Nigeria. Energy and Energy Policy BPRO 29000. http://franke.uchicago.edu/bigproblems/Team2-1209.pdf

  • Gerardi MH (2003) The microbiology of anaerobic digesters. Wastewater microbiology series. Wiley, New Jersey

    Book  Google Scholar 

  • Golueke CG, Oswald WJ, Gotaas HB (1957) Anaerobic digestion of algae. Appl Microbiol 5:47–55

    CAS  Google Scholar 

  • Gonzalez-Fernández C, Sialve B, Bernet N, Steyer JP (2012a) Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass Bioenerg 40:105–111

    Article  Google Scholar 

  • Gonzalez-Fernández C, Sialve B, Bernet N, Steyer JP (2012b) Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresour Technol 110:610–616

    Article  Google Scholar 

  • Gunaseelan VN (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13(1):83–114

    Article  CAS  Google Scholar 

  • Gupta P, Singh RS, Sachan A, Vidyarthi AS, Gupta A (2012) A re-appraisal on intensification of biogas production. Renew Sust Energ Rev 16(7):4908–4916

    Article  Google Scholar 

  • Hansen KH, Angelidaki I, Ahring BK (1998) Anaerobic digestion of swine manure: inhibition by ammonia. Water Res 32(1):5–12

    Article  CAS  Google Scholar 

  • Jones CS, Mayfield SP (2011) Algae biofuels: versatility for the future of bioenergy. Curr Opin Biotechnol 23:1–6

    Article  Google Scholar 

  • Kayhanian M (1999) Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environ Technol 20:355–365

    Article  CAS  Google Scholar 

  • Keymer P et al (2013) High pressure thermal hydrolysis as pre-treatment to increase the methane yield during anaerobic digestion of microalage. Bioresour Technol 131:128–133

    Article  CAS  Google Scholar 

  • Khanal S (2008) Anaerobic biotechnology for bioenergy production: principles and applications. Wiley-Blackwell, Ames

    Book  Google Scholar 

  • Kim JK, Baek Rock O, Chun YN, Kim SW (2006) Effects of temperature and hydraulic retention time on anaerobic digestion of food waste. J Biosci Bioeng 102(4):328–332

    Article  CAS  Google Scholar 

  • Li YY, Sasaki H, Yamashita K, Seki K, Kamigochi I (2002) High-rate methane fermentation of lipid-rich food wastes by a high-solids co-digestion process. Water Sci Technol 45:143–150

    CAS  Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24(4):815–820

    CAS  Google Scholar 

  • Lu J, Gavala HN, Skiadas IV, Mladenovska Z, Ahring BK (2008) Improving anaerobic sewage sludge digestion by implementation of a hyperthermophilic prehydrolisis step. J Environ Manag 88:881–889

    Article  CAS  Google Scholar 

  • Massé DI, Masse L, Croteau F (2003) The effect of temperature fluctuations on psychrophilic anaerobic sequencing batch reactors treating swine manure. Bioresour Technol 89:57–62

    Article  Google Scholar 

  • Massé DI, Masse L, Xia Y, Gilbert Y (2010) Potential of low-temperature anaerobic digestion to address current environmental concerns on swine production. J Anim Sci 88:E112–E120

    Article  Google Scholar 

  • Minowa T, Yokoyama S, Kishimoto M, Okakurat T (1995) Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. J Fuel 74(12):1735–1738

    Article  CAS  Google Scholar 

  • Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150(1):51–56

    Article  CAS  Google Scholar 

  • Nielsen HB, Heiske S (2011) Anaerobic digestion of macroalgae: methane potentials, pre-treatment, inhibition and co-digestion. Water Sci Technol 64:1723–1729

    Article  CAS  Google Scholar 

  • Pantaleo A, Gennaro BD, Shah N (2013) Assessment of optimal size of anaerobic co-digestion plants: an application to cattle farms in the province of Bari (Italy). Renew Sust Energ Rev 20:57–70

    Article  CAS  Google Scholar 

  • Rajagopal R, Rousseau P, Bernet N, Béline F (2011) Combined anaerobic and activated sludge anoxic/oxic treatment for piggery wastewater. Bioresour Technol 102:2185–2192

    Article  CAS  Google Scholar 

  • Ramos-Suárez JL, Carreras N (2014) Use of microalgae residues for biogas production. Chem Eng J 242:86–95

    Article  Google Scholar 

  • Richmond A (2004) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, Oxford

    Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  Google Scholar 

  • Roesijadi G, Jones SB, Snowden-Swan LJ, Zhu Y (2010) Macroalgae as a biomass feedstock: a preliminary analysis. Pacific Northwest National Laboratory, Richland, PNNL 19944

    Book  Google Scholar 

  • Samson R, LeDuy A (1986) Detailed study of anaerobic digestion of Spirulina maxima algae biomass. Biotechnol Bioeng 28:1014–1023

    Article  CAS  Google Scholar 

  • Shanmugam P, Horan NJ (2009) Optimising the biogas production from leather fleshing waste by co-digestion with MSW. Bioresour Technol 100:4117–4120

    Article  CAS  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    Article  CAS  Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14(9):2596–2610

    Article  CAS  Google Scholar 

  • Singh RP, Singh P, Araujo ASF, Ibrahim MH, Sulaiman O (2011a) Management of urban solid waste: vermicomposting a sustainable option. Resour Conserv Recycl 55:719–729

    Article  Google Scholar 

  • Singh RP, Tyagi VV, Allen T, Ibrahim MH, Kothari R (2011b) An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario. Renew Sust Energ Rev 15(9):4797–4808

    Article  Google Scholar 

  • Speece RE (1996) Anaerobic biotechnology for industrial wastewaters. Archae press, Nashville

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial appli—cations of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  • Srivastava V, Ismail SA, Singh P, Singh RP (2015) Urban solid waste management in the developing world with emphasis on India: challenges and opportunities. Rev Environ Sci Biotechnol 14(2):317–337

    Article  Google Scholar 

  • Symons GE, Buswell AM (1933) The methane fermentation of carbohydrates. J Am Chem Soc 55:2028–2036

    Article  CAS  Google Scholar 

  • Tsukahara K, Kimura T, Minowa T, Sawayama S, Yagishita T, Inoue S et al (2001) Microalgal cultivation in a solution recovered from the low temperature catalytic gasification of the microalga. J Biosci Bioeng 91(3):311–313

    Article  CAS  Google Scholar 

  • Vaish B, Srivastava V, Singh P, Singh A, Singh PK, Singh RP (2016a) Exploring untapped energy potential of urban solid waste. Energ Ecol Environ 1(5):1–20

    Article  Google Scholar 

  • Vaish B, Sarkar A, Singh P, Singh PK, Sengupta C, Singh RP (2016b) Prospects of biomethanation in Indian urban solid waste: stepping towards a sustainable future. In: Karthikeyan OP, Heimann K, Muthu SS (eds) Recycling of solid waste for biofuels and bio-chemicals. Springer, Singapore, pp 1–29

    Chapter  Google Scholar 

  • Van den Poel S (2014). Study of the anaerobic degradation of the algae produced in a post-treatment of an anaerobic membrane bioreactor effluent. Master’s dissertation submitted in order to obtain the academic degree of Master of Science in de industriële wetenschappen: chemie, Department of Industrial Technology and Construction

    Google Scholar 

  • Ward AJ, Lewis DM, Green FB (2014) Anaerobic digestion of algae biomass: a review. Algal Res 5:204–214

    Article  Google Scholar 

  • Wilson CA, Novak JT (2009) Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. Water Res 43:4489–4498

    Article  CAS  Google Scholar 

  • Xia Y, Massé DI, McAllister TA, Beaulieu C, Ungerfeld E (2012) Anaerobic digestion of chicken feather with swine manure or slaughterhouse sludge for biogas production. Waste Manag 32:404–409

    Article  CAS  Google Scholar 

  • Zamalloa C, Vrieze JD, Boon N, Verstraete W (2012) Anaerobic digestibility of marine microalgae Phaeodactylumtricornutumin a lab-scale anaerobic membrane bioreactor. Bioenergy Biofuels 93:859–869

    CAS  Google Scholar 

Download references

Acknowledgments

Authors extend their sincere thanks to the Director, Head and Dean, Institute of Environment and Sustainable Development, Banaras Hindu University for providing necessary facilities. RPS is thankful to Department of Science and Technology, India, University of Nebraska–Lincoln, Indo- US Science and Technology Forum (IUSSTF) and Robert Daugherty Water for Food Institute (DWFI) - University of Nebraska for necessary help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Pratap Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vaish, B., Singh, P., Singh, P.K., Singh, R.P. (2017). Biomethanation Potential of Algal Biomass. In: Gupta, S., Malik, A., Bux, F. (eds) Algal Biofuels. Springer, Cham. https://doi.org/10.1007/978-3-319-51010-1_16

Download citation

Publish with us

Policies and ethics