Skip to main content

Advertisement

Log in

Recent Development of Algal Biochar for Contaminant Remediation and Energy Application: A State-of-the Art Review

  • Water and Sediment Pollution (G Toor, L Nghiem and W Zhang, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Algae, as a low-impact aquatic feedstock, is regarded as a promising biomass for producing valuable biofuel, syngas, and biochar. Algae, on the other hand, are mostly composed of lipids, proteins, and carbohydrates, as opposed to lignocellulosic biomass. Algal species have a faster growth rate and higher photosynthetic efficiency than terrestrial plants, making them an excellent alternative for a sustainable environment. Algal biomass has shown great promise as a raw material for biochar production in recent years. Algae biochar has a high potential for use as a material for contamination remediation and energy application. This review paper summarizes the applicability of algal biochar, algal biochar modification strategies, fabrication methods, and algal biochar properties. Carbon sequestration, sediment and water treatment, and energy applications are all thoroughly discussed. More emphasis should be placed on practical applications, and more research should be conducted to address existing problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Yu KL, Lau BF, Show PL, Ong HC, Ling TC, Chen WH, et al. Recent developments on algal biochar production and characterization. Bioresour Technol. 2017;246:2–11. https://doi.org/10.1016/j.biortech.2017.08.009.

    Article  CAS  Google Scholar 

  2. Bird MI, Wurster CM, Silva PHD, Bass AM, de Nys R. Algal biochar - production and properties. Bioresour Technol. 2011;102(2):1886–91. https://doi.org/10.1016/j.biortech.2010.07.106.

    Article  CAS  Google Scholar 

  3. Lee XJ, Ong HC, Gan YY, Chen WH, Mahlia TMI. State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production. Energy Convers Manag. 2020;210:34. https://doi.org/10.1016/j.enconman.2020.112707.

    Article  CAS  Google Scholar 

  4. Demirbas A, Arin G. An overview of biomass pyrolysis. Energy Sources. 2002;24(5):471–82. https://doi.org/10.1080/00908310252889979.

    Article  CAS  Google Scholar 

  5. Chen W-H, Lin B-J, Huang M-Y, Chang J-S. Thermochemical conversion of microalgal biomass into biofuels: a review. Bioresour Technol. 2015;184:314–27. https://doi.org/10.1016/j.biortech.2014.11.050.

    Article  CAS  Google Scholar 

  6. Bird MI, Wurster CM, de Paula Silva PH, Bass AM, De Nys R. Algal biochar–production and properties. Bioresour Technol. 2011;102(2):1886–91. https://doi.org/10.1016/j.biortech.2010.07.106.

    Article  CAS  Google Scholar 

  7. Sun J, Norouzi O, Mašek O. A state-of-the-art review on algae pyrolysis for bioenergy and biochar production. Bioresour. Technol. 2021:126258. https://doi.org/10.1016/j.biortech.2021.126258.

  8. • Tag AT, Duman G, Ucar S, Yanik JJJ. Pyrolysis a. Effects of feedstock type and pyrolysis temperature on potential applications of biochar. J J Anal Appl Pyrolysis. 2016;120:200–6. https://doi.org/10.1016/j.jaap.2016.05.006This article provides basic information about pyrolysis condition for biochar production.

  9. Jung K-W, Jeong T-U, Kang H-J, Ahn K-H. Characteristics of biochar derived from marine macroalgae and fabrication of granular biochar by entrapment in calcium-alginate beads for phosphate removal from aqueous solution. Bioresour Technol. 2016;211:108–16. https://doi.org/10.1016/j.biortech.2016.03.066.

    Article  CAS  Google Scholar 

  10. Chang Y-M, Tsai W-T, Li M-H. Chemical characterization of char derived from slow pyrolysis of microalgal residue. J Anal Appl Pyrolysis. 2015;111:88–93. https://doi.org/10.1016/j.jaap.2014.12.004.

    Article  CAS  Google Scholar 

  11. Yanik J, Stahl R, Troeger N, Sinag A. Pyrolysis of algal biomass. J Anal Appl Pyrolysis. 2013;103:134–41. https://doi.org/10.1016/j.jaap.2012.08.016.

    Article  CAS  Google Scholar 

  12. Bergman PC, Kiel JH. Torrefaction for biomass upgrading. Proc 14th European Biomass Conference, Paris, France. 2005:17–21.

  13. Chen W-H, Huang M-Y, Chang J-S, Chen C-Y. Thermal decomposition dynamics and severity of microalgae residues in torrefaction. Bioresour Technol. 2014;169:258–64. https://doi.org/10.1016/j.biortech.2014.06.086.

    Article  CAS  Google Scholar 

  14. Nhuchhen DR, Basu P, Acharya B. A comprehensive review on biomass torrefaction. Inter J Renew Energy Biofuels. 2014;2014:1–56. https://doi.org/10.5171/2014.506376.

    Article  Google Scholar 

  15. Wu K-T, Tsai C-J, Chen C-S, Chen H-W. The characteristics of torrefied microalgae. Appl Energy. 2012;100:52–7. https://doi.org/10.1016/j.apenergy.2012.03.002.

    Article  CAS  Google Scholar 

  16. Uemura Y, Matsumoto R, Saadon S, Matsumura Y. A study on torrefaction of Laminaria japonica. Fuel Process Technol. 2015;138:133–8. https://doi.org/10.1016/j.fuproc.2015.05.016.

    Article  CAS  Google Scholar 

  17. Mwangi JK, Lee W-J, Whang L-M, Wu TS, Chen W-H, Chang J-S, et al. Microalgae oil: Algae cultivation and harvest, algae residue torrefaction and diesel engine emissions tests. Aerosol Air Qual Res. 2015;15(1):81–98. https://doi.org/10.4209/aaqr.2014.10.0268.

    Article  CAS  Google Scholar 

  18. Yan W, Acharjee TC, Coronella CJ, Vasquez VR. Thermal pretreatment of lignocellulosic biomass. Environ Prog Sustain Energy. 2009;28(3):435–40. https://doi.org/10.1002/ep.10385.

    Article  CAS  Google Scholar 

  19. Bach Q-V, Chen W-H, Sheen H-K, Chang J-S. Gasification kinetics of raw and wet-torrefied microalgae Chlorella vulgaris ESP-31 in carbon dioxide. Bioresour Technol. 2017;244:1393–9. https://doi.org/10.1016/j.biortech.2017.03.153.

    Article  CAS  Google Scholar 

  20. Bach Q-V, Chen W-H, Lin S-C, Sheen H-K, Chang J-SJEC, Management. Wet torrefaction of microalga Chlorella vulgaris ESP-31 with microwave-assisted heating. Energy Convers Manag. 2017;141:163–70. https://doi.org/10.1016/j.enconman.2016.07.035.

  21. Erlach B, Harder B, Tsatsaronis G. Combined hydrothermal carbonization and gasification of biomass with carbon capture. Energy. 2012;45(1):329–38. https://doi.org/10.1016/j.energy.2012.01.057.

    Article  CAS  Google Scholar 

  22. Titirici M-M, White RJ, Falco C, Sevilla M. Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy Environ Sci. 2012;5(5):6796–822. https://doi.org/10.1039/C2EE21166A.

    Article  Google Scholar 

  23. Tekin K, Karagöz S, Bektaş SJR, Reviews SE. A review of hydrothermal biomass processing. Renew. Sustain. Energy Rev. 2014;40:673–87. https://doi.org/10.1016/j.rser.2014.07.216.

  24. Wang TF, Zhai YB, Zhu Y, Li CT, Zeng GM. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew Sustain Energy Rev. 2018;90:223–47. https://doi.org/10.1016/j.rser.2018.03.071.

    Article  CAS  Google Scholar 

  25. Levine RB, Sierra COS, Hockstad R, Obeid W, Hatcher PG, Savage PE. The use of hydrothermal carbonization to recycle nutrients in algal biofuel production. Environ Prog Sustain Energy. 2013;32(4):962–75. https://aiche.onlinelibrary.wiley.com/journal/19447450.

  26. Broch A, Jena U, Hoekman SK, Langford J. Analysis of solid and aqueous phase products from hydrothermal carbonization of whole and lipid-extracted algae. Energies. 2014;7(1):62–79. https://doi.org/10.3390/en7010062.

    Article  CAS  Google Scholar 

  27. Heilmann SM, Davis HT, Jader LR, Lefebvre PA, Sadowsky MJ, Schendel FJ, et al. Hydrothermal carbonization of microalgae. Biomass Bioenerg. 2010;34(6):875–82. https://doi.org/10.1016/j.biombioe.2010.01.032.

    Article  CAS  Google Scholar 

  28. •• Leng L, Xiong Q, Yang L, Li H, Zhou Y, Zhang W, et al. An overview on engineering the surface area and porosity of biochar. Sci Total Environ. 2021;763: 144204. https://doi.org/10.1016/j.scitotenv.2020.144204This review paper highlights the relationships between the surface area/porosity of biochar and its application in environmental remeidation.

    Article  CAS  Google Scholar 

  29. Ronsse F, Van Hecke S, Dickinson D, Prins WJGB. Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB-Bioenergy. 2013;5(2):104–15. https://doi.org/10.1111/gcbb.12018.

    Article  CAS  Google Scholar 

  30. Wang K, Brown RC, Homsy S, Martinez L, Sidhu SS. Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production. Bioresour Technol. 2013;127:494–9. https://doi.org/10.1016/j.biortech.2012.08.016.

    Article  CAS  Google Scholar 

  31. Roberts DA, Paul NA, Dworjanyn SA, Bird MI, de Nys R. Biochar from commercially cultivated seaweed for soil amelioration. Sci Rep. 2015;5(1):1–6. https://doi.org/10.1038/srep09665.

    Article  CAS  Google Scholar 

  32. Sun D, Lan Y, Xu EG, Meng J, Chen WJWM. Biochar as a novel niche for culturing microbial communities in composting. Waste Manage. 2016;54:93–100. https://doi.org/10.1016/j.wasman.2016.05.004

  33. Jin H, Hanif MU, Capareda S, Chang Z, Huang H, Ai Y. Copper (II) removal potential from aqueous solution by pyrolysis biochar derived from anaerobically digested algae-dairy-manure and effect of KOH activation. J Environ Chem Eng. 2016;4(1):365–72. https://doi.org/10.1016/j.jece.2015.11.022.

    Article  CAS  Google Scholar 

  34. Liu P, Rao D, Zou L, Teng Y, Yu H. Capacity and potential mechanisms of Cd (II) adsorption from aqueous solution by blue algae-derived biochars. Sci Total Environ. 2021;767: 145447. https://doi.org/10.1016/j.scitotenv.2021.145447.

    Article  CAS  Google Scholar 

  35. Guo W-Q, Zheng H-S, Li S, Du J-S, Feng X-C, Yin R-L, et al. Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae. Bioresour Technol. 2016;221:284–90. https://doi.org/10.1016/j.biortech.2016.09.036.

    Article  CAS  Google Scholar 

  36. Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MPJJ. Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manage. 2016;181:817–31. https://doi.org/10.1016/j.jenvman.2016.06.059.

  37. Chen YD, Liu FY, Ren NQ, Ho SH. Revolutions in algal biochar for different applications: state-of-the-art techniques and future scenarios. Chin Chem Lett. 2020;31(10):2591–602. https://doi.org/10.1016/j.cclet.2020.08.019.

    Article  CAS  Google Scholar 

  38. Ippolito JA, Cui LQ, Kammann C, Wrage-Monnig N, Estavillo JM, Fuertes-Mendizabal T, et al. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar. 2020;2(4):421–38. https://doi.org/10.1007/s42773-020-00067-x.

    Article  Google Scholar 

  39. Sohi SP, Krull E, Lopez-Capel E, Bol R. A review of biochar and its use and function in soil. In: Sparks DL, editor. Advances in Agronomy, Vol 105. Advances in Agronomy. San Diego: Elsevier Academic Press Inc; 2010. p. 47–82.

  40. Karthik V, Kumar PS, Vo DVN, Sindhu J, Sneka D, Subhashini B, et al. Hydrothermal production of algal biochar for environmental and fertilizer applications: a review. Environ Chem Lett. 2021;19(2):1025–42. https://doi.org/10.1007/s10311-020-01139-x.

  41. • Kumar G, Shobana S, Chen WH, Bach QV, Kim SH, Atabani AE, et al. A review of thermochemical conversion of microalgal biomass for biofuels: chemistry and processes. Green Chem. 2017;19(1):44–67. https://doi.org/10.1039/c6gc01937dThis article summarizes the production of  renewable biofuels from algaes via thermal conversion processes.

  42. Anto S, Sudhakar MP, Ahamed TS, Samuel MS, Mathimani T, Brindhadevi K, et al. Activation strategies for biochar to use as an efficient catalyst in various applications. Fuel. 2021;285:8. https://doi.org/10.1016/j.fuel.2020.119205.

    Article  CAS  Google Scholar 

  43. Sun YN, Gao B, Yao Y, Fang JN, Zhang M, Zhou YM, et al. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem Eng J. 2014;240:574–8. https://doi.org/10.1016/j.cej.2013.10.081.

  44. Yang CY, Li R, Zhang B, Qiu Q, Wang BW, Yang H, et al. Pyrolysis of microalgae: a critical review. Fuel Process Technol. 2019;186:53–72. https://doi.org/10.1016/j.fuproc.2018.12.012.

    Article  CAS  Google Scholar 

  45. Roberts DA, Cole AJ, Paul NA, de Nys R. Algal biochar enhances the re-vegetation of stockpiled mine soils with native grass. J Environ Manage. 2015;161:173–80. https://doi.org/10.1016/j.jenvman.2015.07.002.

    Article  CAS  Google Scholar 

  46. Mukome FND, Zhang XM, Silva LCR, Six J, Parikh SJ. Use of Chemical and physical characteristics to investigate trends in biochar feedstocks. J Agric Food Chem. 2013;61(9):2196–204. https://doi.org/10.1021/jf3049142.

    Article  CAS  Google Scholar 

  47. Zhou YR, Zhang HL, Cai L, Guo J, Wang YN, Ji LL, et al. Preparation and characterization of macroalgae biochar nanomaterials with highly efficient adsorption and photodegradation ability. Materials. 2018;11(9):14. https://doi.org/10.3390/ma11091709.

    Article  CAS  Google Scholar 

  48. Yang CH, Miao SC, Li TJ. Influence of water washing treatment on Ulva prolifera-derived biochar properties and sorption characteristics of ofloxacin. Sci Rep. 2021;11(1):12. https://doi.org/10.1038/s41598-021-81314-4.

    Article  CAS  Google Scholar 

  49. Rajapaksha AU, Vithanage M, Lee SS, Seo DC, Tsang DCW, Ok YS. Steam activation of biochars facilitates kinetics and pH-resilience of sulfamethazine sorption. J Soils Sediments. 2016;16(3):889–95. https://doi.org/10.1007/s11368-015-1325-x.

    Article  CAS  Google Scholar 

  50. Zhao L, Zheng W, Masek O, Chen X, Gu BW, Sharma BK, et al. Roles of phosphoric acid in biochar formation: synchronously improving carbon retention and sorption capacity. J Environ Qual. 2017;46(2):393–401. https://doi.org/10.2134/jeq2016.09.0344.

    Article  CAS  Google Scholar 

  51. Singh A, Sharma R, Pant D, Malaviya P. Engineered algal biochar for contaminant remediation and electrochemical applications. Sci Total Environ. 2021;774:25. https://doi.org/10.1016/j.scitotenv.2021.145676.

    Article  CAS  Google Scholar 

  52. Shim T, Yoo J, Ryu C, Park Y, Jung J. Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity. Bioresour Technol. 2015;197:85–90. https://doi.org/10.1016/j.biortech.2015.08.055.

    Article  CAS  Google Scholar 

  53. Ranguin R, Delannoy M, Yacou C, Jean-Marius C, Feidt C, Rychen G, et al. Biochar and activated carbons preparation from invasive algae Sargassum spp. for Chlordecone availability reduction in contaminated soils. J Environ Chem Eng. 2021;9(4):9. https://doi.org/10.1016/j.jece.2021.105280.

  54. •• Sajjadi B, Chen WY, Egiebor NO. A comprehensive review on physical activation of biochar for energy and environmental applications. Rev Chem Eng. 2019;35(6):735–76. https://doi.org/10.1515/revce-2017-0113This communication presents a comprehensive review of physical activation/modification strategies and their effects on biochar properties and related environmental application fields.

    Article  CAS  Google Scholar 

  55. Sevilla M, Gu W, Falco C, Titirici MM, Fuertes AB, Yushin G. Hydrothermal synthesis of microalgae-derived microporous carbons for electrochemical capacitors. J Power Sources. 2014;267:26–32. https://doi.org/10.1016/j.jpowsour.2014.05.046.

    Article  CAS  Google Scholar 

  56. Patra BR, Mukherjee A, Nanda S, Dalai AK. Biochar production, activation and adsorptive applications: a review. Environ Chemi Lett. 2021;19(3):2237–59. https://doi.org/10.1007/s10311-020-01165-9.

    Article  CAS  Google Scholar 

  57. Rizwan M, Mujtaba G, Memon SA, Lee K, Rashid N. Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renew Sustain Energy Rev. 2018;92:394–404. https://doi.org/10.1016/j.rser.2018.04.034.

  58. Molina M, Zaelke D, Sarma KM, Andersen SO, Ramanathan V, Kaniaru D. Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions. Proc Natl Acad Sci USA. 2009;106(49):20616–21. https://doi.org/10.1073/pnas.0902568106.

    Article  Google Scholar 

  59. Zhang SP, Wang L, Wei W, Hu JJ, Mei SH, Zhao QY, et al. Enhanced roles of biochar and organic fertilizer in microalgae for soil carbon sink. Biodegradation. 2018;29(4):313–21. https://doi.org/10.1007/s10532-017-9790-0.

    Article  CAS  Google Scholar 

  60. Ennis CJ, Evans AG, Islam M, Ralebitso-Senior TK, Senior E. Biochar: carbon sequestration, land remediation, and impacts on soil microbiology. Crit Rev Environ Sci Technol. 2012;42(22):2311–64. https://doi.org/10.1080/10643389.2011.574115.

    Article  CAS  Google Scholar 

  61. Mona S, Malyan SK, Saini N, Deepak B, Pugazhendhi A, Kumar SS. Towards sustainable agriculture with carbon sequestration, and greenhouse gas mitigation using algal biochar. Chemosphere. 2021;275:17. https://doi.org/10.1016/j.chemosphere.2021.129856.

    Article  CAS  Google Scholar 

  62. Ghorbani A, Rahimpour HR, Ghasemi Y, Zoughi S, Rahimpour MR. A review of carbon capture and sequestration in iran: microalgal biofixation potential in iran. renew. Sustain Energy Rev. 2014;35:73–100. https://doi.org/10.1016/j.rser.2014.03.013.

  63. Cheah WY, Show PL, Chang JS, Ling TC, Juan JC. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour Technol. 2015;184:190–201. https://doi.org/10.1016/j.biortech.2014.11.026.

    Article  CAS  Google Scholar 

  64. Moreira D, Pires JCM. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path. Bioresour Technol. 2016;215:371–9. https://doi.org/10.1016/j.biortech.2016.03.060.

    Article  CAS  Google Scholar 

  65. Yu KL, Show PL, Ong HC, Ling TC, Chen WH, Salleh MAM. Biochar production from microalgae cultivation through pyrolysis as a sustainable carbon sequestration and biorefinery approach. Clean Technol Environ Policy. 2018;20(9):2047–55. https://doi.org/10.1007/s10098-018-1521-7.

    Article  CAS  Google Scholar 

  66. Jung KW, Jeong TU, Choi JW, Ahn KH, Lee SH. Adsorption of phosphate from aqueous solution using electrochemically modified biochar calcium-alginate beads: batch and fixed-bed column performance. Bioresour Technol. 2017;244:23–32. https://doi.org/10.1016/j.biortech.2017.07.133.

    Article  CAS  Google Scholar 

  67. Liu PY, Rao DA, Zou LY, Teng Y, Yu HY. Capacity and potential mechanisms of Cd(II) adsorption from aqueous solution by blue algae-derived biochars. Sci Total Environ. 2021;767. https://doi.org/10.1016/j.scitotenv.2021.145447.

  68. • Son EB, Poo KM, Chang JS, Chae KJ. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Sci Total Environ. 2018;615:161–8. https://doi.org/10.1016/j.scitotenv.2017.09.171This paper reported the application of magnetic biochar derived from marine in heavy metal removal.

    Article  CAS  Google Scholar 

  69. Wang BL, Zheng JL, Li YY, Zaidi A, Hu YW, Hu BW. Fabrication of delta-MnO2-modified algal biochar for efficient removal of U(VI) from aqueous solutions. J Environ Chem Eng. 2021;9(4):10. https://doi.org/10.1016/j.jece.2021.105625.

    Article  CAS  Google Scholar 

  70. Zheng HS, Guo WQ, Li S, Chen YD, Wu QL, Feng XC, et al. Adsorption of p-nitrophenols (PNP) on microalgal biochar: analysis of high adsorption capacity and mechanism. Bioresour Technol. 2017;244:1456–64. https://doi.org/10.1016/j.biortech.2017.05.025.

    Article  CAS  Google Scholar 

  71. Nguyen VT, Nguyen TB, Chen CW, Hung CM, Vo TDH, Chang JH, et al. Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground. Bioresour Technol. 2019;284:197–203. https://doi.org/10.1016/j.biortech.2019.03.096.

    Article  CAS  Google Scholar 

  72. Zhao M, Ma XH, Liao XR, Cheng SY, Liu Q, Wang HF, et al. Characteristics of algae-derived biochars and their sorption and remediation performance for sulfamethoxazole in marine environment. Chem Eng J. 2022;430:13. https://doi.org/10.1016/j.cej.2021.133092.

    Article  CAS  Google Scholar 

  73. Enaime G, Baçaoui A, Yaacoubi A, Lübken M. Biochar for wastewater treatment—conversion technologies and applications. Appl Sci. 2020;10(10):3492. https://doi.org/10.3390/app10103492.

    Article  CAS  Google Scholar 

  74. Sutar S, Otari S, Jadhav J. Biochar based photocatalyst for degradation of organic aqueous waste: a review. Chemosphere. 2022;287: 132200. https://doi.org/10.1016/j.chemosphere.2021.132200.

    Article  CAS  Google Scholar 

  75. Ho S-H, Li R, Zhang C, Ge Y, Cao G, Ma M, et al. N-doped graphitic biochars from C-phycocyanin extracted Spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation. Water Res. 2019;159:77–86. https://doi.org/10.1016/j.watres.2019.05.008.

    Article  CAS  Google Scholar 

  76. Chen C, Ma T, Shang Y, Gao B, Jin B, Dan H, et al. In-situ pyrolysis of Enteromorpha as carbocatalyst for catalytic removal of organic contaminants: considering the intrinsic N/Fe in Enteromorpha and non-radical reaction. Appl Catal B Environ. 2019;250:382–95. https://doi.org/10.1016/j.apcatb.2019.03.048.

    Article  CAS  Google Scholar 

  77. Qi Y, Ge B, Zhang Y, Jiang B, Wang C, Akram M, et al. Three-dimensional porous graphene-like biochar derived from Enteromorpha as a persulfate activator for sulfamethoxazole degradation: role of graphitic N and radicals transformation. J Hazard Mater. 2020;399: 123039. https://doi.org/10.1016/j.jhazmat.2020.123039.

    Article  CAS  Google Scholar 

  78. Wang H, Wang H, Zhao H, Yan Q. Adsorption and Fenton-like removal of chelated nickel from Zn-Ni alloy electroplating wastewater using activated biochar composite derived from Taihu blue algae. Chem Eng J. 2020;379: 122372. https://doi.org/10.1016/j.cej.2019.122372.

    Article  CAS  Google Scholar 

  79. Huang Y-m, Li G, Li M, Yin J, Meng N, Zhang D, et al. Kelp-derived N-doped biochar activated peroxymonosulfate for ofloxacin degradation. Sci. Total Environ. 2021;754:141999. https://doi.org/10.1016/j.scitotenv.2020.141999.

  80. Zhou Y, Zhang H, Cai L, Guo J, Wang Y, Ji L, et al. Preparation and characterization of macroalgae biochar nanomaterials with highly efficient adsorption and photodegradation ability. Materials. 2018;11(9):1709. https://doi.org/10.3390/ma11091709.

    Article  CAS  Google Scholar 

  81. Sharma G, Bhogal S, Gupta VK, Agarwal S, Kumar A, Pathania D, et al. Algal biochar reinforced trimetallic nanocomposite as adsorptional/photocatalyst for remediation of malachite green from aqueous medium. J Mol Liq. 2019;275:499–509. https://doi.org/10.1016/j.molliq.2018.11.070.

    Article  CAS  Google Scholar 

  82. Fazal T, Razzaq A, Javed F, Hafeez A, Rashid N, Amjad US, et al. Integrating adsorption and photocatalysis: a cost effective strategy for textile wastewater treatment using hybrid biochar-TiO2 composite. J Hazard Mater. 2020;390: 121623. https://doi.org/10.1016/j.jhazmat.2019.121623.

    Article  CAS  Google Scholar 

  83. Burton GA. Metal bioavailability and toxicity in sediments. Criti Rev Environ Sci Technol. 2010;40(9–10):852–907. https://doi.org/10.1080/10643380802501567.

    Article  CAS  Google Scholar 

  84. Perelo LW. In situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater. 2010;177(1–3):81–9. https://doi.org/10.1016/j.jhazmat.2009.12.090.

    Article  CAS  Google Scholar 

  85. Vandenbossche M, Jimenez M, Casetta M, Traisnel M. Remediation of heavy metals by biomolecules: a review. Crit Rev Environ Sci Technol. 2015;45(15):1644–704. https://doi.org/10.1080/10643389.2014.966425.

    Article  CAS  Google Scholar 

  86. Hung C-M, Huang C, Hsieh S-L, Tsai M-L, Chen C-W, Dong C-D. Biochar derived from red algae for efficient remediation of 4-nonylphenol from marine sediments. Chemosphere. 2020;254: 126916. https://doi.org/10.1016/j.chemosphere.2020.126916.

    Article  CAS  Google Scholar 

  87. Hung C-M, Chen C-W, Huang C-P, Dong C-D. Activation of peroxymonosulfate by nitrogen-doped carbocatalysts derived from brown algal (Sargassum duplicatum) for the degradation of polycyclic aromatic hydrocarbons in marine sediments. J Environ Chemi Eng. 2021;9(6): 106420. https://doi.org/10.1016/j.jece.2021.106420.

    Article  CAS  Google Scholar 

  88. Hung C-M, Huang C-P, Chen C-W, Dong C-D. The degradation of di-(2-ethylhexyl) phthalate, DEHP, in sediments using percarbonate activated by seaweed biochars and its effects on the benthic microbial community. J Clean Prod. 2021;292: 126108. https://doi.org/10.1016/j.jclepro.2021.126108.

    Article  CAS  Google Scholar 

  89. Hung C-M, Chen C-W, Huang C-P, Cheng J-W, Dong C-D. Algae-derived metal-free boron-doped biochar as an efficient bioremediation pretreatment for persistent organic pollutants in marine sediments. J Clean Prod. 2022:130448. https://doi.org/10.1016/j.jclepro.2022.130448

  90. Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, et al. Microalgae biorefinery: high value products perspectives. Bioresour Technol. 2017;229:53–62. https://doi.org/10.1016/j.biortech.2017.01.006.

    Article  CAS  Google Scholar 

  91. Sarwer A, Hamed SM, Osman AI, Jamil F, Al-Muhtaseb AH, Alhajeri NS, et al. Algal biomass valorization for biofuel production and carbon sequestration: a review. Environ Chem Lett. 2022;20(5):2797–851. https://doi.org/10.1007/s10311-022-01458-1.

    Article  CAS  Google Scholar 

  92. Zhong WZ, Chi LN, Luo YJ, Zhang ZZ, Zhang ZJ, Wu WM. Enhanced methane production from Taihu Lake blue algae by anaerobic co-digestion with corn straw in continuous feed digesters. Bioresour Technol. 2013;134:264–70. https://doi.org/10.1016/j.biortech.2013.02.060.

    Article  CAS  Google Scholar 

  93. Wu Y, Wu SL, Zhang HY, Xiao R. Cellulose-lignin interactions during catalytic pyrolysis with different zeolite catalysts. Fuel Process Technol. 2018;179:436–42. https://doi.org/10.1016/j.fuproc.2018.07.027.

    Article  CAS  Google Scholar 

  94. Saber M, Nakhshiniev B, Yoshikawa K. A review of production and upgrading of algal bio-oil. Renew Sustain Energy Rev. 2016;58:918–30. https://doi.org/10.1016/j.rser.2015.12.342.

    Article  CAS  Google Scholar 

  95. Gan YY, Ong HC, Show PL, Ling TC, Chen WH, Yu KL, et al. Torrefaction of microalgal biochar as potential coal fuel and application as bio-adsorbent. Energy Convers Manag. 2018;165:152–62. https://doi.org/10.1016/j.enconman.2018.03.046.

    Article  CAS  Google Scholar 

  96. Kim SW, Koo BS, Lee DH. A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed. Bioresour Technol. 2014;162:96–102. https://doi.org/10.1016/j.biortech.2014.03.136.

    Article  CAS  Google Scholar 

  97. Tang ZY, Chen W, Hu JH, Li SQ, Chen YQ, Yang HP, et al. Co-pyrolysis of microalgae with low-density polyethylene (LDPE) for deoxygenation and denitrification. Bioresour Technol. 2020;311:7. https://doi.org/10.1016/j.biortech.2020.123502.

    Article  CAS  Google Scholar 

  98. Xu SN, Cao B, Uzoejinwa BB, Odey EA, Wang S, Shang H, et al. Synergistic effects of catalytic co-pyrolysis of macroalgae with waste plastics. Process Saf Environ Prot. 2020;137:34–48. https://doi.org/10.1016/j.psep.2020.02.001.

    Article  CAS  Google Scholar 

  99. •• Chi NTL, Anto S, Ahamed TS, Kumar SS, Shanmugam S, Samuel MS, et al. A review on biochar production techniques and biochar based catalyst for biofuel production from algae. Fuel. 2021;287:9. https://doi.org/10.1016/j.fuel.2020.119411This review highilights why biochar catalyst is important for fuel production and its advantages.

    Article  CAS  Google Scholar 

  100. Fu XB, Li DH, Chen J, Zhang YM, Huang WY, Zhu Y, et al. A microalgae residue based carbon solid acid catalyst for biodiesel production. Bioresour Technol. 2013;146:767–70. https://doi.org/10.1016/j.biortech.2013.07.117.

    Article  CAS  Google Scholar 

  101. Qian KZ, Kumar A, Zhang HL, Bellmer D, Huhnke R. Recent advances in utilization of biochar. Renew Sustai Energy Rev. 2015;42:1055–64. https://doi.org/10.1016/j.rser.2014.10.074.

    Article  CAS  Google Scholar 

  102. Ibrahim AFM, Dandamudi KPR, Deng SG, Lin JYS. Pyrolysis of hydrothermal liquefaction algal biochar for hydrogen production in a membrane reactor. Fuel. 2020;265:8. https://doi.org/10.1016/j.fuel.2019.116935.

    Article  CAS  Google Scholar 

  103. Arun J, Varshini P, Prithvinath PK, Priyadarshini V, Gopinath KP. Enrichment of bio-oil after hydrothermal liquefaction (HTL) of microalgae C. vulgaris grown in wastewater: bio-char and post HTL wastewater utilization studies. Bioresour. Technol. 2018;261:182–7. https://doi.org/10.1016/j.biortech.2018.04.029.

  104. Mahima J, Sundaresh RK, Gopinath KP, Rajan PSS, Arun J, Kim SH, et al. Effect of algae (Scenedesmus obliquus) biomass pre-treatment on bio-oil production in hydrothermal liquefaction (HTL): biochar and aqueous phase utilization studies. Sci Total Environ. 2021;778:9. https://doi.org/10.1016/j.scitotenv.2021.146262.

    Article  CAS  Google Scholar 

  105. Taghavi S, Norouzi O, Tavasoli A, Di Maria F, Signoretto M, Menegazzo F, et al. Catalytic conversion of Venice lagoon brown marine algae for producing hydrogen-rich gas and valuable biochemical using algal biochar and Ni/SBA-15 catalyst. Int J Hydrog Energy. 2018;43(43):19918–29. https://doi.org/10.1016/j.ijhydene.2018.09.028.

    Article  CAS  Google Scholar 

  106. Norouzi O, Di Maria F. Catalytic effect of functional and Fe composite biochars on biofuel and biochemical derived from the pyrolysis of green marine biomass. Fermentation-Basel. 2018;4(4):9. https://doi.org/10.3390/fermentation4040096.

    Article  CAS  Google Scholar 

  107. • Salimi P, Norouzi O, Pourhoseini SEM, Bartocci P, Tavasoli A, Di Maria F, et al. Magnetic biochar obtained through catalytic pyrolysis of macroalgae: a promising anode material for Li-ion batteries. Renew Energy. 2019;140:704–14. https://doi.org/10.1016/j.renene.2019.03.077This study reported  the utilization of algal biochar as an electrode in Li-ion battery in energy production and storage systems.

    Article  CAS  Google Scholar 

  108. Logan BE, Hamelers B, Rozendal RA, Schrorder U, Keller J, Freguia S, et al. Microbial fuel cells: methodology and technology. Environmen Sci Technol. 2006;40(17):5181–92. https://doi.org/10.1021/es0605016.

    Article  CAS  Google Scholar 

  109. Lefebvre O, Uzabiaga A, Chang IS, Kim BH, Ng HY. Microbial fuel cells for energy self-sufficient domestic wastewater treatment-a review and discussion from energetic consideration. Appl Microbiol Biotechnol. 2011;89(2):259–70. https://doi.org/10.1007/s00253-010-2881-z.

    Article  CAS  Google Scholar 

  110. Chakraborty I, Sathe SM, Dubey BK, Ghangrekar MM. Waste-derived biochar: applications and future perspective in microbial fuel cells. Bioresour Technol. 2020;312:12. https://doi.org/10.1016/j.biortech.2020.123587.

    Article  CAS  Google Scholar 

  111. Bhatia SK, Palai AK, Kumar A, Bhatia RK, Patel AK, Thakur VK, et al. Trends in renewable energy production employing biomass-based biochar. Bioresour Technol. 2021;340:12. https://doi.org/10.1016/j.biortech.2021.125644.

    Article  CAS  Google Scholar 

  112. Chakraborty I, Bhowmick GD, Ghosh D, Dubey BK, Pradhan D, Ghangrekar MM. Novel low-cost activated algal biochar as a cathode catalyst for improving performance of microbial fuel cell. Sustain Energy Technol Assess. 2020;42:10. https://doi.org/10.1016/j.seta.2020.100808.

    Article  Google Scholar 

  113. Wang YS, Li DB, Zhang F, Tong ZH, Yu HQ. Algal biomass derived biochar anode for efficient extracellular electron uptake from Shewanella oneidensis MR-1. Front Environ Sci Eng. 2018;12(4):9. https://doi.org/10.1007/s11783-018-1072-5.

    Article  CAS  Google Scholar 

  114. • Lee JH, Kim DS, Yang JH, Chun Y, Yoo HY, Han SO, et al. Enhanced electron transfer mediator based on biochar from microalgal sludge for application to bioelectrochemical systems. Bioresour Technol. 2018;264:387–90. https://doi.org/10.1016/j.biortech.2018.06.097This study is focused on the utilization of microalgal sludge in biochar conversion and its application as an electrode material in enzymatic fuel cell system.

    Article  CAS  Google Scholar 

  115. Jung KW, Ahn KH. Fabrication of porosity-enhanced MgO/biochar for removal of phosphate from aqueous solution: application of a novel combined electrochemical modification method. Bioresour Technol. 2016;200:1029–32. https://doi.org/10.1016/j.biortech.2015.10.008.

    Article  CAS  Google Scholar 

  116. Jung KW, Jeong TU, Kang HJ, Chang JS, Ahn KH. Preparation of modified-biochar from Laminaria japonica: simultaneous optimization of aluminum electrode-based electro-modification and pyrolysis processes and its application for phosphate removal. Bioresour Technol. 2016;214:548–57. https://doi.org/10.1016/j.biortech.2016.05.005.

    Article  CAS  Google Scholar 

  117. Jung KW, Jeong TU, Hwang MJ, Kim K, Ahn KH. Phosphate adsorption ability of biochar/Mg-Al assembled nanocomposites prepared by aluminum-electrode based electro-assisted modification method with MgCl2 as electrolyte. Bioresour Technol. 2015;198:603–10. https://doi.org/10.1016/j.biortech.2015.09.068.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, and other collaborating universities for this study.

Funding

This research is partially funded by the Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number NCM2021-20–01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan-Thanh Bui.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Water and Sediment Pollution

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, TB., Nguyen, VT., Hoang, HG. et al. Recent Development of Algal Biochar for Contaminant Remediation and Energy Application: A State-of-the Art Review. Curr Pollution Rep 9, 73–89 (2023). https://doi.org/10.1007/s40726-022-00243-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-022-00243-6

Keywords

Navigation