Skip to main content
Log in

Genomics-Based Systems and Multi-disciplinary Approaches to Unlock Complex Gene Networks Underlying Wood Formation

  • Wood Structure and Function (A Koubaa, Section Editor)
  • Published:
Current Forestry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Wood represents an important economic natural resource and the molecular regulatory mechanisms underlying its formation are best studied through biotechnological approaches, of which genomics forms an important branch. The evolution of technologies employed to examine wood formation at the molecular level has led to the development of novel methods in the field of wood genomics. The goal of this paper is to summarize the important advancements made in recent years to study wood genomics.

Recent Findings

Breakthroughs in sequencing technologies and the availability of additional assembled and functionally annotated plant genomes have broadened the scope of organisms for investigating the distinct wood formation patterns among seed plants. The study of non-coding RNAs and epigenetic interactions has become an important part of research on the expression regulation of genes implicated in wood formation. Systems genetics coupled with network graph theory have been used to integrate multiple layers of molecular data to study wood formation as a complex biological process. In terms of wood improvement, genomics-enabled breeding has produced similar or even better results compared to traditional selection approaches.

Summary

Over the past 5 years, the field of wood genomics has seen a shift to an increasingly holistic approach to help decipher wood formation as a complex biological process. In the future, the field of wood genomics will see major contributions from evolutionary developmental biology, epigenomics, and the study of additional interactions between biomolecules. The resulting knowledge will further improve genomic prediction models in support of tree germplasm enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Spicer R, Groover A. Evolution of development of vascular cambia and secondary growth. New Phytol. 2010;186:577–92.

    Article  CAS  Google Scholar 

  2. Morris JL, Puttick MN, Clark JW, et al. The timescale of early land plant evolution. Proc Natl Acad Sci U S A. 2018;115:E2274–83.

    Article  CAS  Google Scholar 

  3. Zhong R, Cui D, Ye ZH. Secondary cell wall biosynthesis. New Phytol. 2019;221:1703–23.

    Article  CAS  Google Scholar 

  4. Plomion C, Leprovost G, Stokes A. Wood formation in trees. Plant Physiol. 2001;127:1513–23.

    Article  CAS  Google Scholar 

  5. Zhong R, Mccarthy RL, Lee C, Ye ZH. Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar. Plant Physiol. 2011;157:1452–68.

    Article  CAS  Google Scholar 

  6. Fromm J. Cellular aspects of wood formation. Plant Cell Monogr. 2013. https://doi.org/10.1007/978-3-642-36491-4.

  7. Demura T, Fukuda H. Transcriptional regulation in wood formation. Trends Plant Sci. 2007;12:64–70.

    Article  CAS  Google Scholar 

  8. Hertzberg M, Aspeborg H, Schrader J, et al. A transcriptional roadmap to wood formation. Proc Natl Acad Sci U S A. 2001;98:14732–7.

    Article  CAS  Google Scholar 

  9. Ye ZH, Zhong R. Molecular control of wood formation in trees. J Exp Bot. 2015;66:4119–31.

    Article  CAS  Google Scholar 

  10. •• Zhang J, Xie M, Tuskan GA, Muchero W, Chen JG. Recent advances in the transcriptional regulation of secondary cell wall biosynthesis in the woody plants. Front Plant Sci. 2018;871:1–14 One of the more up-to-date reviews of the genetic regulation of secondary cell wall deposition in Arabidopsis and forest trees.

    Google Scholar 

  11. Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science. 2018;361:866–9.

    Article  CAS  Google Scholar 

  12. Zheng L, Yang J, Chen Y, Ding L, Wei J, Wang H. An improved and efficient method of Agrobacterium syringe infiltration for transient transformation and its application in the elucidation of gene function in poplar. BMC Plant Biol. 2021;21:1–19.

    Article  Google Scholar 

  13. Plasencia A, Soler M, Dupas A, Ladouce N, Silva-Martins G, Martinez Y, Lapierre C, Franche C, Truchet I, Grima-Pettenati J. Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation. Plant Biotechnol J. 2016;14:1381–93.

    Article  CAS  Google Scholar 

  14. Lu Q, Shao F, Macmillan C, Wilson IW, van der Merwe K, Hussey SG, Myburg AA, Dong X, Qiu D. Genomewide analysis of the lateral organ boundaries domain gene family in Eucalyptus grandis reveals members that differentially impact secondary growth. Plant Biotechnol J. 2018;16:124–36.

    Article  CAS  Google Scholar 

  15. Tong G, Shen H, Cao S, Xu W, Ma X, Cheng Y. Identification of RING-H2 gene candidates related to wood formation in poplar. Forests. 2019;10:1–15.

    Article  Google Scholar 

  16. Cao S, Guo M, Wang C, et al. Genome-wide characterization of aspartic protease (AP) gene family in Populus trichocarpa and identification of the potential PtAPs involved in wood formation. BMC Plant Biol. 2019. https://doi.org/10.1186/s12870-019-1865-0.

  17. Kong L, Li Z, Song Q, Li X, Luo K. Construction of a full-length cDNA over-expressing library to identify valuable genes from Populus tomentosa. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22073448.

  18. Porth I, El-Kassaby YA (2014) Current status of the development of genetically modified (GM) forest trees world-wide: a comparison with the development of other GM plants in agriculture. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. https://doi.org/10.1079/PAVSNNR20149008

  19. Kirst M, Myburg AA, de León JPG, Kirst ME, Scott J, Sederoff R. Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of eucalyptus. Plant Physiol. 2004;135:2368–78.

    Article  CAS  Google Scholar 

  20. Unamba CIN, Nag A, Sharma RK. Next generation sequencing technologies: the doorway to the unexplored genomics of non-model plants. Front Plant Sci. 2015;6:1074.

    Article  Google Scholar 

  21. Wenger AM, Peluso P, Rowell WJ, et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol. 2019;37:1155–62.

    Article  CAS  Google Scholar 

  22. Zhang J, Elo A, Helariutta Y. Arabidopsis as a model for wood formation. Curr Opin Biotechnol. 2011;22:293–9.

    Article  CAS  Google Scholar 

  23. Kaul S, Koo HL, Jenkins J, et al. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000 408:6814. 2000;408:796–815.

    CAS  Google Scholar 

  24. Myburg AA, Grattapaglia D, Tuskan GA, et al. The genome of Eucalyptus grandis. Nature 2014 510:7505. 2014;510:356–62.

    CAS  Google Scholar 

  25. Nystedt B, Street NR, Wetterbom A, et al. The Norway spruce genome sequence and conifer genome evolution. Nature. 2013;497:579–84.

    Article  CAS  Google Scholar 

  26. Birol I, Raymond A, Jackman SD, et al. Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics. 2013;29:1492–7.

    Article  CAS  Google Scholar 

  27. Neale DB, Wegrzyn JL, Stevens KA, et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 2014 15:3. 2014;15:1–13.

    Google Scholar 

  28. Tuskan GA, DiFazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 2006;313:1596–604.

    Article  CAS  Google Scholar 

  29. Dharanishanthi V, Dasgupta MG. Construction of co-expression network based on natural expression variation of xylogenesis-related transcripts in Eucalyptus tereticornis. Mol Biol Rep. 2016;43:1129–46.

    Article  CAS  Google Scholar 

  30. Faivre-Rampant P, Zaina G, Jorge V, et al. New resources for genetic studies in Populus nigra: genome-wide SNP discovery and development of a 12k Infinium array. Mol Ecol Resour. 2016;16:1023–36.

    Article  CAS  Google Scholar 

  31. Zhou D, Du Q, Chen J, Wang Q, Zhang D. Identification and allelic dissection uncover roles of lncRNAs in secondary growth of Populus tomentosa. DNA Res. 2017;24:473–86.

    Article  CAS  Google Scholar 

  32. Paiva JAP, Garnier-Géré PH, Rodrigues JC, et al. Plasticity of maritime pine (Pinus pinaster) wood-forming tissues during a growing season. New Phytol. 2008;179:1180–94.

    Article  CAS  Google Scholar 

  33. • Balmant KM, Noble JD, Alves FC, et al. Xylem systems genetics analysis reveals a key regulator of lignin biosynthesis in Populus deltoides. Genome Res. 2020;30:1131–43 This paper exemplifies the power of systems genetics to identify key regulators, or hubs of wood formation regulatory networks.

    Article  CAS  Google Scholar 

  34. Lenz PRN, Beaulieu J, Mansfield SD, Clément S, Desponts M, Bousquet J. Factors affecting the accuracy of genomic selection for growth and wood quality traits in an advanced-breeding population of black spruce (Picea mariana). BMC Genomics. 2017;18:1–17.

    Article  Google Scholar 

  35. Sundell D, Mannapperuma C, Netotea S, Delhomme N, Lin YC, Sjödin A, van de Peer Y, Jansson S, Hvidsten TR, Street NR. The plant genome integrative explorer resource: PlantGenIE.org. New Phytol. 2015;208:1149–56.

    Article  CAS  Google Scholar 

  36. Sundell D, Street NR, Kumar M, et al. Aspwood: high-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula. Plant Cell. 2017;29:1585–604.

    Article  CAS  Google Scholar 

  37. Jokipii-Lukkari S, Sundell D, Nilsson O, Hvidsten TR, Street NR, Tuominen H. NorWood: a gene expression resource for evo-devo studies of conifer wood development. New Phytol. 2017;216:482–94.

    Article  Google Scholar 

  38. Lu N, Zhu T, Ouyang F, et al. PICEAdatabase: a web database for Picea omics and phenotypic information. Database. 2019;2019:1–12.

    Article  CAS  Google Scholar 

  39. Wang H, Liu S, Dai X, et al. PSDX: a comprehensive multi-omics association database of Populus trichocarpa with a focus on the secondary growth in response to stresses. Front Plant Sci. 2021. https://doi.org/10.3389/fpls.2021.655565.

  40. Michael TP, Jupe F, Bemm F, Motley ST, Sandoval JP, Lanz C, Loudet O, Weigel D, Ecker JR. High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell. Nat Commun. 2018;9:1–8.

    Article  CAS  Google Scholar 

  41. Tarelkina T, Novitskaya LL, Galibina NA, Moshchenskaya YL, Nikerova KM, Nikolaeva NN, Sofronova IN, Ivanova DS, Semenova LI. Expression analysis of key auxin biosynthesis, transport, and metabolism genes of Betula pendula with special emphasis on figured wood formation in Karelian Birch. Plants. 2020;9:1–28.

    Article  CAS  Google Scholar 

  42. Tarelkina T, Galibina NA, Moshchenskaya YL, Novitskaya LL. In silico analysis of regulatory cis-elements in the promoters of genes encoding apoplastic invertase and sucrose synthase in silver birch. Russ J Dev Biol. 2020;51:323–35.

    Article  CAS  Google Scholar 

  43. Chen SS, Zhao Y, Zhao X, Chen SS. Identification of putative lignin biosynthesis genes in Betula pendula. Trees - Struct Funct. 2020;34:1255–65.

    Article  CAS  Google Scholar 

  44. Han R, Gu C, Li R, et al. Characterization and T-DNA insertion sites identification of a multiple-branches mutant br in Betula platyphylla × Betula pendula. BMC Plant Biol. 2019. https://doi.org/10.1186/s12870-019-2098-y.

  45. Cai M, Huang H, Ni F, Tong Z, Lin E, Zhu M. RNA-Seq analysis of differential gene expression in Betula luminifera xylem during the early stages of tension wood formation. PeerJ. 2018. https://doi.org/10.7717/peerj.5427.

  46. Vikashini B, Shanthi A, Ghosh Dasgupta M. Identification and expression profiling of genes governing lignin biosynthesis in Casuarina equisetifolia L. Gene. 2018;676:37–46.

    Article  CAS  Google Scholar 

  47. Lu N, Ma W, Han D, et al. Genome-wide analysis of the Catalpa bungei caffeic acid O-methyltransferase (COMT) gene family: Identification and expression profiles in normal, tension, and opposite wood. PeerJ. 2019. https://doi.org/10.7717/peerj.6520.

  48. Lu N, Mei F, Wang Z, Wang N, Xiao Y, Kong L, Qu G, Ma W, Wang J. Single-nucleotide polymorphisms (SNPs) in a sucrose synthase gene are associated with wood properties in Catalpa fargesii bur. BMC Genet. 2018. https://doi.org/10.1186/s12863-018-0686-8.

  49. Li M, Dong X, Peng J, Xu W, Ren R, Liu J, Cao F, Liu Z. De novo transcriptome sequencing and gene expression analysis reveal potential mechanisms of seed abortion in dove tree (Davidia involucrata Baill.). BMC Plant Biol. 2016;16:82.

    Article  CAS  Google Scholar 

  50. Ma Q, Bu D, Zhang J, Wu Y, Pei D. The transcriptome landscape of walnut interspecies hybrid (Juglans hindsii × Juglans regia) and regulation of cambial activity in relation to grafting. Front Genet. 2019. https://doi.org/10.3389/fgene.2019.00577.

  51. Annapurna D, Warrier RR, Arunkumar AN, Aparna R, Sreedevi CN, Joshi G. Development, characterization, functional annotation and validation of genomic and genic-SSR markers using de novo next generation sequencing in Melia dubia Cav. 3 Biotech. 2021. https://doi.org/10.1007/s13205-021-02858-w.

  52. Ouyang K, Li J, Zhao X, Que Q, Li P, Huang H, Deng X, Singh SK, Wu AM, Chen X. Transcriptomic analysis of multipurpose timber yielding tree Neolamarckia cadamba during xylogenesis using RNA-Seq. PLoS One. 2016. https://doi.org/10.1371/journal.pone.0159407.

  53. Hurtado FMM, Pinto M de S, de Oliveira PN, Riaño-Pachón DM, Inocente LB, Carrer H. Analysis of NAC domain transcription factor genes of Tectona grandis L.f. involved in secondary cell wall deposition. Genes. 2020. https://doi.org/10.3390/genes11010020.

  54. • Strijk JS, Hinsinger DD, Zhang F, Cao K. Trochodendron aralioides, the first chromosome-level draft genome in Trochodendrales and a valuable resource for basal eudicot research. GigaScience. 2019. https://doi.org/10.1093/gigascience/giz136As a basal angiosperm without vessel elements in its secondary xylem, T. aralioides represents an interesting species for the comparison of wood structures and development patterns across seed plants.

  55. Zhang Y, Han X, Sang J, He X, Liu M, Qiao G, Zhuo R, He G, Hu J. Transcriptome analysis of immature xylem in the Chinese fir at different developmental phases. PeerJ. 2016;2016:1–21.

    Google Scholar 

  56. Duan H, Cao S, Zheng H, et al. Genetic characterization of Chinese fir from six provinces in southern China and construction of a core collection. Sci Rep. 2017;7:1–10.

    Article  CAS  Google Scholar 

  57. Mori H, Ueno S, Ujino-Ihara T, et al. Mapping quantitative trait loci for growth and wood property traits in Cryptomeria japonica across multiple environments. Tree Genet Genomes. 2019. https://doi.org/10.1007/s11295-019-1346-5.

  58. Breidenbach N, Sharov Vv, Gailing O, Krutovsky Kv De novo transcriptome assembly of cold stressed clones of the hexaploid Sequoia sempervirens (D. Don) Endl. Scientific Data. 2020. https://doi.org/10.1038/s41597-020-00576-1

  59. •• Scott AD, Zimin A, Puiu D, et al. A reference genome sequence for giant sequoia. G3 Genes|Genomes|Genetics. 2020;10:3907–19 This study is one of the first to highlight the power of chromatin conformation capture, and its combination with next- and third-generation sequencing for genome assembly in a conifer species.

    Article  CAS  Google Scholar 

  60. Wei S, Yang Y, Yin T. The chromosome-scale assembly of the willow genome provides insight into Salicaceae genome evolution. Hortic Res. 2020;7:1–12.

    Article  CAS  Google Scholar 

  61. Zinkgraf M, Gerttula S, Groover A. Transcript profiling of a novel plant meristem, the monocot cambium. J Integr Plant Biol. 2017;59:436–49.

    Article  CAS  Google Scholar 

  62. •• Roodt D, Li Z, van de Peer Y, Mizrachi E, Gaut B. Loss of wood formation genes in monocot genomes. Genome Biol Evol. 2019;11:1986–96 The authors identified varying degree of conservation for genes preferentially expressed in the secondary xylem of multiple angiosperms species, highlighting gene clusters necessary for woodiness, secondary growth from a vascular cambium and vasculature on land.

    Article  CAS  Google Scholar 

  63. • Povilus RA, DaCosta JM, Grassa C, et al. Water lily (Nymphaea thermarum) genome reveals variable genomic signatures of ancient vascular cambium losses. Proc Natl Acad Sci U S A. 2020;117:8649–56 This paper provided an interesting model species to study basal angiosperm evolution and the reversal to an aquatic habitat. Comparative genomics is also conducted with several angiosperm species to identify variation in wood formation genes.

    Article  CAS  Google Scholar 

  64. •• Chery JG, Pace MR, Acevedo-Rodríguez P, Specht CD, Rothfels CJ. Modifications during early plant development promote the evolution of nature’s most complex woods. Curr Biol. 2020;30:237–244.e2 The authors present particular wood structures and developments in lianas using morphological phylogenetics and an evolutionary developmental biology approach. The inclusion of genomics approaches in similar studies are promising to study the molecular regulation of wood formation.

    Article  CAS  Google Scholar 

  65. •• Tomescu AMF, Groover AT. Mosaic modularity: an updated perspective and research agenda for the evolution of vascular cambial growth. New Phytol. 2019;222:1719–35 In this review, the authors describe how a mosaic of developmental modules occurs during wood formation to generate the diversity of forms observed across land plant secondary growths.

    Article  Google Scholar 

  66. Zhao C, He Y, Yu Y, Zhou M, Zhao L, Xia X, Wang C. Transcriptomic analysis of seasonal gene expression and regulation during xylem development in “Shanxin” hybrid Poplar (Populus davidiana × Populus bolleana). Forests. 2021. https://doi.org/10.3390/f12040451.

  67. Gong C, Du Q, Xie J, Quan M, Chen B, Zhang D. Dissection of insertion–deletion variants within differentially expressed genes involved in wood formation in Populus. Front Plant Sci. 2018. https://doi.org/10.3389/fpls.2017.02199.

  68. Xuan A, Song Y, Bu C, Chen P, El-Kassaby YA, Zhang D. Changes in DNA methylation in response to 6-benzylaminopurine affect allele-specific gene expression in Populus tomentosa. Int J Mol Sci. 2020;21:1–24.

    Article  Google Scholar 

  69. Chen J, Quan M, Zhang D. Genome-wide identification of novel long non-coding RNAs in Populus tomentosa tension wood, opposite wood and normal wood xylem by RNA-seq. Planta. 2014;241:125–43.

    Article  CAS  Google Scholar 

  70. • Xiao Y, Yi F, Ling J, Yang G, Lu N, Jia Z, Wang J, Zhao K, Wang J, Ma W. Genome-wide analysis of lncRNA and mRNA expression and endogenous hormone regulation during tension wood formation in Catalpa bungei. BMC Genomics. 2020;21:1–16 This article reports the role of long non-coding RNAs in the regulation of hormonal signal transduction during tension wood formation.

    Article  Google Scholar 

  71. Xu J, Du R, Meng X, Zhao W, Kong L, Chen J. Third-generation sequencing indicated that LncRNA could regulate eIF2D to enhance protein translation under heat stress in Populus simonii. Plant Mol Biol Report 2020 39:1. 2020;39:240–50.

    Google Scholar 

  72. • Xu J, Fang M, Li Z, Zhang M, Liu X, Peng Y, Wan Y, Chen J. Third-generation sequencing reveals LncRNA-regulated HSP genes in the Populus x canadensis Moench heat stress response. Front Genet. 2020;0:249 This study highlights the power of third generation sequencing to study non-coding RNAs in forest trees and can serve as an example for applying this approach to the study of wood formation.

    Article  CAS  Google Scholar 

  73. Bao H, Li E, Mansfield SD, Cronk QCB, El-Kassaby YA, Douglas CJ. The developing xylem transcriptome and genome-wide analysis of alternative splicing in Populus trichocarpa (black cottonwood) populations. BMC Genomics. 2013;14:1.

    Article  CAS  Google Scholar 

  74. Wang B, Tseng E, Regulski M, Clark TA, Hon T, Jiao Y, Lu Z, Olson A, Stein JC, Ware D. Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. Nat Commun. 2016;7:1–13.

    Google Scholar 

  75. Zhang Y, Liu C, Cheng H, Tian S, Liu Y, Wang S, Zhang H, Saqib M, Wei H, Wei Z. DNA methylation and its effects on gene expression during primary to secondary growth in poplar stems. BMC Genomics. 2020;21:1–18.

    Google Scholar 

  76. • Luo L, Zhu Y, Gui J, Yin T, Luo W, Liu J, Li L. A comparative analysis of transcription networks active in juvenile and mature wood in Populus. Front Plant Sci. 2021;12:1–13 This research used transcriptome profiling together with epigenomics to identify interactions between DNA methylations and gene expressions that regulate juvenile and mature wood formation.

    Article  Google Scholar 

  77. Chen B, Xu H, Guo Y, Grünhofer P, Schreiber L, Lin J, Li R. Transcriptomic and epigenomic remodeling occurs during vascular cambium periodicity in Populus tomentosa. Hortic Res. 2021;8:102.

    Article  CAS  Google Scholar 

  78. Hussey SG, Loots MT, van der Merwe K, Mizrachi E, Myburg AA. Integrated analysis and transcript abundance modelling of H3K4me3 and H3K27me3 in developing secondary xylem. Sci Rep. 2017;7:1–14.

    Article  CAS  Google Scholar 

  79. Kitano H. Systems biology: a brief overview. Science. 2002;295.

  80. Bruggeman FJ, Westerhoff H, v. The nature of systems biology. Trends Microbiol. 2007;15:45–50.

    Article  CAS  Google Scholar 

  81. Civelek M, Lusis AJ. Systems genetics approaches to understand complex traits. Nat Publ Group. 2014. https://doi.org/10.1038/nrg3575.

  82. Mizrachi E, Myburg AA. Systems genetics of wood formation. Curr Opin Plant Biol. 2016;30:94–100.

    Article  Google Scholar 

  83. Porth I, Klápště J, Skyba O, Friedmann MC, Hannemann J, Ehlting J, El-Kassaby YA, Mansfield SD, Douglas CJ. Network analysis reveals the relationship among wood properties, gene expression levels and genotypes of natural Populus trichocarpa accessions. New Phytol. 2013;200:727–42.

    Article  CAS  Google Scholar 

  84. Zinkgraf M, Liu L, Groover A, Filkov V. Identifying gene coexpression networks underlying the dynamic regulation of wood-forming tissues in Populus under diverse environmental conditions. New Phytol. 2017;214:1464–78.

    Article  CAS  Google Scholar 

  85. Dharanishanthi V, Dasgupta MG. Co-expression network of secondary cell wall biogenesis genes in Eucalyptus tereticornis. Silvae Genetica. 2018;67:72–8.

    Article  Google Scholar 

  86. •• Zinkgraf M, Zhao ST, Canning C, Gerttula S, Lu MZ, Filkov V, Groover A. Evolutionary network genomics of wood formation in a phylogenetic survey of angiosperm forest trees. New Phytol. 2020;228:1811–23 This article used comparative genomics in conjunction with systems genetics to study co-expression networks involved in wood formation during gravitropic stimulation across 13 angiosperms species.

    Article  CAS  Google Scholar 

  87. Zhang H, Yin T. Identifying candidate genes for wood formation in poplar based on microarray network analysis and graph theory. Tree Genet Genomes. 2016;12:1–10.

    Article  CAS  Google Scholar 

  88. Ployet R, Veneziano Labate MT, Regiani Cataldi T, et al. A systems biology view of wood formation in Eucalyptus grandis trees submitted to different potassium and water regimes. New Phytol. 2019;223:766–82.

    Article  CAS  Google Scholar 

  89. Porth I, El-Kassaby YA. Using Populus as a lignocellulosic feedstock for bioethanol. Biotechnol J. 2015;10:510–24.

    Article  CAS  Google Scholar 

  90. Zobel B. Inheritance of wood properties in conifers. Silvae Genetica. 1961;10:65–70.

    Google Scholar 

  91. Yanchuk A, Kiss G. Genetic variation in growth and wood specific gravity and its utility in the improvement on interior spruce in British Columbia. Silvae Genetica. 1993;42:141–8.

    Google Scholar 

  92. El-Kassaby YA, Park YS. Genetic variation and correlation in growth, biomass, and phenology of Douglas-fir diallel progeny at different spacings. Silvae Genetica. 1993;42:289–97.

    Google Scholar 

  93. Krakowski J, Park YS, El-Kassaby YA. Early testing of Douglas-fir: Wood density and ring width. For Genet. 2005;12:99–105.

    Google Scholar 

  94. Gamal El-Dien O, Ratcliffe B, Klápště J, Chen C, Porth I, El-Kassaby YA. Prediction accuracies for growth and wood attributes of interior spruce in space using genotyping-by-sequencing. BMC Genomics. 2015;16:1–16.

    Article  CAS  Google Scholar 

  95. Thistlethwaite FR, Ratcliffe B, Klápště J, Porth I, Chen C, Stoehr MU, El-Kassaby YA. Genomic prediction accuracies in space and time for height and wood density of Douglas-fir using exome capture as the genotyping platform. BMC Genomics. 2017;18:1–16.

    Article  Google Scholar 

  96. de Miguel M, de Maria N, Guevara MT, et al. Annotated genetic linkage maps of Pinus pinaster Ait. from a Central Spain population using microsatellite and gene-based markers. BMC Genomics. 2012. https://doi.org/10.1186/1471-2164-13-527.

  97. Sewell MM, Bassoni DL, Megraw RA, Wheeler NC, Neale DB. Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). I. Physical wood properties. Theor Appl Genet. 2000;101:1273–81.

    Article  CAS  Google Scholar 

  98. Sewell MM, Davis MF, Tuskan GA, Wheeler NC, Elam CC, Bassoni DL, Neale DB. Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). II. Chemical wood properties. Theor Appl Genet. 2002;104:214–22.

    Article  CAS  Google Scholar 

  99. Pot D, Rodrigues JC, Rozenberg P, Chantre G, Tibbits J, Cahalan C, Pichavant F, Plomion C. QTLs and candidate genes for wood properties in maritime pine (Pinus pinaster Ait.). Tree Genet Genomes. 2006;2:10–24.

    Article  Google Scholar 

  100. Zhang J, Nieminen K, Serra JAA, Helariutta Y. The formation of wood and its control. Curr Opin Plant Biol. 2014;17:56–63.

    Article  CAS  Google Scholar 

  101. Geraldes A, Difazio SP, Slavov GT, et al. A 34K SNP genotyping array for Populus trichocarpa: design, application to the study of natural populations and transferability to other Populus species. Mol Ecol Resour. 2013;13:306–23.

    Article  CAS  Google Scholar 

  102. Chen C, Mitchell SE, Elshire RJ, Buckler ES, El-Kassaby YA. Mining conifers’ mega-genome using rapid and efficient multiplexed high-throughput genotyping-by-sequencing (GBS) SNP discovery platform. Tree Genet Genomes. 2013;9:1537–44.

    Article  Google Scholar 

  103. Imai A, Nonaka K, Kuniga T, Yoshioka T, Hayashi T. Genome-wide association mapping of fruit-quality traits using genotyping-by-sequencing approach in citrus landraces, modern cultivars, and breeding lines in Japan. Tree Genet Genomes. 2018;14:1–15.

    Article  Google Scholar 

  104. Lu M, Krutovsky K, Nelson CD, Koralewski TE, Byram TD, Loopstra CA. Exome genotyping, linkage disequilibrium and population structure in loblolly pine (Pinus taeda L.). BMC Genomics. 2016;17:1–11.

    CAS  Google Scholar 

  105. Dasgupta MG, Dharanishanthi V, Agarwal I, Krutovsky K, v. Development of genetic markers in Eucalyptus species by target enrichment and exome sequencing. PLoS One. 2015. https://doi.org/10.1371/journal.pone.0116528.

  106. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.

    Article  CAS  Google Scholar 

  107. • Grattapaglia D, Silva-Junior OB, Resende RT, Cappa EP, Müller BSF, Tan B, Isik F, Ratcliffe B, El-Kassaby YA. Quantitative genetics and genomics converge to accelerate forest tree breeding. Front Plant Sci. 2018;871:1–10 This review summarizes the developments of genomics-assisted forest tree breeding in recent years.

    Google Scholar 

  108. Porth I, Klapšte J, Skyba O, et al. Genome-wide association mapping for wood characteristics in Populus identifies an array of candidate single nucleotide polymorphisms. New Phytol. 2013;200:710–26.

    Article  CAS  Google Scholar 

  109. Marigorta UM, Rodríguez JA, Gibson G, Navarro A. Replicability and prediction: lessons and challenges from GWAS. Trends Genet. 2018;34:504–17.

    Article  CAS  Google Scholar 

  110. Piot A, Prunier J, Isabel N, Klápště J, El-Kassaby YA, Villarreal Aguilar JC, Porth I. Genomic diversity evaluation of Populus trichocarpa germplasm for rare variant genetic association studies. Front Genet. 2020;10:1–13.

    Article  CAS  Google Scholar 

  111. Nagano S, Hirao T, Takashima Y, Matsushita M, Mishima K, Takahashi M, Iki T, Ishiguri F, Hiraoka Y. SNP genotyping with target amplicon sequencing using a multiplexed primer panel and its application to genomic prediction in Japanese Cedar, Cryptomeria japonica (L.f.) D.Don. Forests. 2020. https://doi.org/10.3390/F11090898.

  112. Zhou L, Chen Z, Olsson L, Grahn T, Karlsson B, Wu HX, Lundqvist SO, García-Gil MR. Effect of number of annual rings and tree ages on genomic predictive ability for solid wood properties of Norway spruce. BMC Genomics. 2020;21:1–12.

    Article  CAS  Google Scholar 

  113. Bouvet JM, Makouanzi Ekomono CG, Brendel O, Laclau JP, Bouillet JP, Epron D. Selecting for water use efficiency, wood chemical traits and biomass with genomic selection in a Eucalyptus breeding program. For Ecol Manag. 2020;465:118092.

    Article  Google Scholar 

  114. Beaulieu J, Nadeau S, Ding C, et al. Genomic selection for resistance to spruce budworm in white spruce and relationships with growth and wood quality traits. Evol Appl. 2020;13:2704–22.

    Article  CAS  Google Scholar 

  115. • Lenz PRN, Nadeau S, Mottet MJ, Perron M, Isabel N, Beaulieu J, Bousquet J. Multi-trait genomic selection for weevil resistance, growth, and wood quality in Norway spruce. Evol Appl. 2020;13:76–94 This study demonstrated the feasibility of accurately predicting multiple important phenotypic traits for forest tree breeding using genomic selection in conifers.

    Article  CAS  Google Scholar 

  116. Ballesta P, Maldonado C, Pérez-Rodríguez P, Mora F. SNP and haplotype-based genomic selection of quantitative traits in Eucalyptus globulus. Plants. 2019;8:1–18.

    Article  CAS  Google Scholar 

  117. Calleja-Rodriguez A, Pan J, Funda T, Chen Z, Baison J, Isik F, Abrahamsson S, Wu HX. Evaluation of the efficiency of genomic versus pedigree predictions for growth and wood quality traits in Scots pine. BMC Genomics. 2020;21:1–17.

    Article  CAS  Google Scholar 

  118. Li Y, Dungey HS. Expected benefit of genomic selection over forward selection in conifer breeding and deployment. PLoS One. 2018;13:1–21.

    Article  Google Scholar 

  119. Ukrainetz NK, Mansfield SD. Assessing the sensitivities of genomic selection for growth and wood quality traits in lodgepole pine using Bayesian models. Tree Genet Genomes. 2020. https://doi.org/10.1007/s11295-019-1404-z.

  120. Resende RT, Resende MDV, Silva FF, Azevedo CF, Takahashi EK, Silva-Junior OB, Grattapaglia D. Assessing the expected response to genomic selection of individuals and families in Eucalyptus breeding with an additive-dominant model. Heredity. 2017;119:245–55.

    Article  CAS  Google Scholar 

  121. • Thistlethwaite FR, El-Dien OG, Ratcliffe B, Klápště J, Porth I, Chen C, Stoehr MU, Ingvarsson PK, El-Kassaby YA. Linkage disequilibrium vs. pedigree: genomic selection prediction accuracy in conifer species. PLoS One. 2020;15:1–14 In this research, the authors highlighted the importance of using a large number of molecular markers for effective genomic selection in conifers.

    Article  CAS  Google Scholar 

  122. Scheben A, Wolter F, Batley J, Puchta H, Edwards D. Towards CRISPR/Cas crops - bringing together genomics and genome editing. New Phytol. 2017;216:682–98.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was enabled through an NSERC Discovery grant (RGPIN/04748-2017) to I.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Piot.

Ethics declarations

Conflict of Interest

Anthony Piot, Yousry A. El-Kassaby, and Ilga Porth declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does NOT contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Wood Structure and Function

Supplementary Information

ESM 1

(XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piot, A., El-Kassaby, Y.A. & Porth, I. Genomics-Based Systems and Multi-disciplinary Approaches to Unlock Complex Gene Networks Underlying Wood Formation. Curr Forestry Rep 8, 166–180 (2022). https://doi.org/10.1007/s40725-022-00162-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40725-022-00162-1

Keywords

Navigation