Skip to main content
Log in

Synchrony patterns in Laplacian networks

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

A network of coupled dynamical systems is represented by a graph whose vertices represent individual cells and whose edges represent couplings between cells. Motivated by the impact of synchronization results of the Kuramoto networks, we introduce the generalized class of Laplacian networks, governed by mappings whose Jacobian at any point is a symmetric matrix with row entries summing to zero. By recognizing this matrix with a weighted Laplacian of the associated graph, we derive the optimal estimates of its positive, null and negative eigenvalues directly from the graph topology. Furthermore, we provide a characterization of the mappings that define Laplacian networks. Lastly, we discuss stability of equilibria inside synchrony subspaces for two types of Laplacian network on a ring with some extra couplings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the synchrony computation code are openly available at the links below: https://drive.google.com/file/d/1-ogTHwezqxY4PCLgXQ12ZbBBqISQTERi/view?usp=sharing and https://drive.google.com/file/d/1RUUYSppXsWaUT-VnhbHZPZepqtmUjopl/view?usp=sharing

References

  1. Aguiar, M.A.D., Dias, A.P.S.: The lattice of synchrony subspaces of a coupled cell network: Characterization and computation algorithm. J. Non. Sci. 24(6), 949–996 (2014)

    Article  MathSciNet  CAS  Google Scholar 

  2. Aguiar, M.A.D., Dias, A.P.S.: Minimal coupled cell networks. Nonlinearity 20, 193–219 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. Amorim, T.A., Manoel, M.: The realization of admissible graphs for coupled vector fields. Nonlinearity 37(1), 015004 (2023)

    Article  ADS  Google Scholar 

  4. Antoneli, F., Stewart, I.: Symmetry and synchrony in coupled cell networks 1: Fixed-point spaces. Int. J. Bif. Chaos 16(3), 559–577 (2006)

    Article  MathSciNet  Google Scholar 

  5. Bronski, J.C., DeVille, L.: Spectral theory for dynamics on graphs containing attractive and repulsive interactions. SIAM J. Appl. Math. 74(1), 83–105 (2014)

    Article  MathSciNet  Google Scholar 

  6. Bronski, J.C., Carty, T.E., DeVille, L.: Synchronisation conditions in the Kuramoto model and their relationship to seminorms. Nonlinearity 34(8), 5399 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  7. Czajkowski, B. M., Batista, C. A., Viana, R. L.: Synchronization of phase oscillators with chemical coupling: Removal of oscillators and external feedback control. Physica A 610, (2023)

  8. Dias, A.P.S., Stewart, I.: Linear equivalence and ODE-equivalence for coupled cell networks. Nonlinearity 18, 1003–20 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. Jadbabaie, A., Motee, N. Barahona, M.: On the stability of the Kuramoto model of coupled nonlinear oscillators. In: Proceedings of the 2004 American Control Conference. IEEE, 4296–4301 (2004)

  10. Golubitsky, M., Stewart, I., Schaeffer, D.: Singularities and Groups in Bifurcation Theory, vol. 2. Springer, Appl. Math. Sci. (1985)

    Book  Google Scholar 

  11. Golubitsky, M., Stewart, I., Török, A.: Patterns of synchrony in coupled cell networks with multiple arrows. SIAM J. Appl. Dyn. Syst. 4(1), 78–100 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  12. Golubitsky, M., Stewart, I.: Dynamics and Bifurcation in Networks: Theory and Applications of Coupled Differential Equations, SIAM (2023)

  13. Golubitsky, M., Nicol, M., Stewart, I.: Some curious phenomena in coupled cell networks. J. Nonlinear Sci. 14, 207–236 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  14. Kotwal, T., Jiang, X., Abrams, D.M.: Connecting the Kuramoto model and the chimera state. Phys. Rev. Lett. 119, 26 (2017)

    Article  Google Scholar 

  15. Kuramoto, Y.: pp. 420–422. , New York (1975)

  16. Manoel, M., Roberts, M.: Gradient systems on coupled cell networks. Nonlinearity 28, 3487–3509 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. Novikov, A.V., Benderskaya, E.N.: Oscillatory neural networks based on the Kuramoto model for cluster analysis. Pattern Recognit Image Anal. 24, 365–371 (2014)

    Article  Google Scholar 

  18. Song, J.U., Choi, K., Oh, S.M., Kahng, B.: Exploring nonlinear dynamics and network structures in Kuramoto systems using machine learning approaches. Chaos 33, 073148 (2023)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  19. Stephen, W.: Introduction to applied nonlinear dynamical systems and chaos, Second Edition Springer, Berlin (2003)

  20. Stewart, I., Golubitsky, M., Pivato, M.: Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM J. Appl. Dyn. Syst. 2(4), 609–646 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  21. Vandermeer, J., Hajian-Forooshani, Z., Medina, N., Perfecto, I.: New forms of structure in ecosystems revealed with the Kuramoto model. R. Soc. Open Sci. 8, 3 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

TAA acknowledges financial support by FAPESP grant 2019/2130-0, and MM acknowledges financial support by FAPESP grant 2019/21181-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Manoel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Albuquerque Amorim, T., Manoel, M. Synchrony patterns in Laplacian networks. Res Math Sci 11, 23 (2024). https://doi.org/10.1007/s40687-024-00428-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-024-00428-z

Keywords

Mathematics Subject Classification

Navigation