Skip to main content
Log in

Comprehensive Analysis of Heavy Metal Aerosol Emissions and Health Risk from the Electrical Discharge Machining Process: A Control and Mitigation Approach for Green Manufacturing

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

On a metal manufacturing shop floor, hazardous metal emissions are released from machines. These emissions remain suspended in the proximity of the working environment for an extended period despite the presence of a ventilation system and pose health risks to the workers. The present work discussed the need and demand for control and mitigation of emissions from the most demanding industrial shop floor electrical discharge machine (EDM) process for pollution-free manufacturing. The emissions of metal aerosols from the EDM process impose significant concerns for occupational safety. Health risk assessment of EDM emission reveals the presence of carcinogenic and non-carcinogenic elements in substantially high concentrations, causing several pulmonary and life-threatening diseases. The developed nanofiber-based multi-layer auxiliary filtration system reduces the PM1 particles of 170 × 105 per litre of air concentration using the non-coated and nano-coated composite nanofiber-based multi-layer filters with filtration efficiency of ~ 87% and 97.27%, respectively. Moreover, the filtration efficiency of varying sizes of PM particles (average diameter of > 0.35 µm) is estimated to be ~ 99% using the above-mentioned in-house developed filtration systems with less pressure drop comparable with commercial filters. A comparative assessment of in-house developed filtration systems reveals nearly equal filtration efficiency with low flow resistance, reusable and cost-effectiveness than the high-efficiency particulate air (HEPA) filters. The presented study examines hazardous emissions from shopfloor machines and proposes a control mitigation approach through technological innovation to promote green manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The required data has already been provided as Supplementary Material.

References

  1. SuthangathanParamashivan, S., Mathew, J., & Mahadevan, S. (2012). Mathematical modeling of aerosol emission from die sinking electrical discharge machining process. Applied Mathematical Modelling, 36(4), 1493–1503. https://doi.org/10.1016/j.apm.2011.09.034

    Article  Google Scholar 

  2. Research, Z. M. (2018). Zion market research. https://www.globenewswire.com/news-release/2018/09/12/1569727/0/en/Global-Electrical-Discharge-Machine-Market-To-Reach-Around-USD-7-97-Billion-By-2024-Zion-Market-Research.html. Accessed 12 Sept 2018.

  3. Jain, V. K. (2007). Advanced machining processes. Allied Publishers Pvt Limited.

  4. Singh, M., Jain, V. K., & Ramkumar, J. (2022). 3-D fabrication using electrical discharge-milling: An overview. Materials and Manufacturing Processes, 37(11), 1215–1245. https://doi.org/10.1080/10426914.2022.2072888

  5. Singh, M., Sharma, S., & Ramkumar, J. (2020). Numerical simulation of melt-pool hydrodynamics in μ-EDM process. Procedia CIRP, 95, 226–231. https://doi.org/10.1016/j.procir.2020.02.289

    Article  Google Scholar 

  6. Singh, M., Saxena, P., Ramkumar, J., & Rao, R. V. (2020). Multi-spark numerical simulation of the micro-EDM process: An extension of a single-spark numerical study. International Journal of Advanced Manufacturing Technology, 108(9–10), 2701–2715. https://doi.org/10.1007/s00170-020-05566-6

    Article  Google Scholar 

  7. Ho, K. H., & Newman, S. T. (2003). State of the art electrical discharge machining (EDM). International Journal of Machine Tools and Manufacture, 43(13), 1287–1300. https://doi.org/10.1016/S0890-6955(03)00162-7

    Article  Google Scholar 

  8. Kunieda, M., Lauwers, B., Rajurkar, K. P., & Schumacher, B. M. (2005). Advancing EDM through fundamental insight into the process. In CIRP annals, 54(2), 64–87. https://doi.org/10.1016/S0007-8506(07)60020-1

  9. Valaki, J. B., Rathod, P. P., & Khatri, B. C. (2015). Environmental impact, personnel health and operational safety aspects of electric discharge machining: A review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(9), 1481–1491. https://doi.org/10.1177/0954405414543314

    Article  Google Scholar 

  10. Zhang, D., Li, H., Luo, X. S., Huang, W., Pang, Y., Yang, J., Tang, M., Mehmood, T., & Zhao, Z. (2022). Toxicity assessment and heavy metal components of inhalable particulate matters (PM2.5 & PM10) during a dust storm invading the city. Process Safety and Environmental Protection, 162, 859–866. https://doi.org/10.1016/j.psep.2022.04.065

    Article  Google Scholar 

  11. Morawska, L., Afshari, A., Bae, G. N., Buonanno, G., Chao, C. Y. H., Hänninen, O., Hofmann, W., Isaxon, C., Jayaratne, E. R., Pasanen, P., Salthammer, T., Waring, M., & Wierzbicka, A. (2013). Indoor aerosols: From personal exposure to risk assessment. Indoor Air, 23(6), 462–487. https://doi.org/10.1111/ina.12044

    Article  Google Scholar 

  12. Vinodh, S., Arvind, K. R., & Somanaathan, M. (2011). Tools and techniques for enabling sustainability through lean initiatives. Clean Technologies and Environmental Policy, 13(3), 469–479. https://doi.org/10.1007/s10098-010-0329-x

    Article  Google Scholar 

  13. Zhang, Z., Zhang, Y., Lin, L., Wu, J., Yu, H., Pan, X., Li, G., Wu, J., & Xue, T. (2021). Study on productivity and aerosol emissions of magnetic field-assisted EDM process of SiCp/Al composite with high volume fractions. Journal of Cleaner Production, 292. https://doi.org/10.1016/j.jclepro.2021.126018

  14. Sivapirakasam, S. P., Mathew, J., & Surianarayanan, M. (2011). Constituent analysis of aerosol generated from die sinking electrical discharge machining process. Process Safety and Environmental Protection, 89(2), 141–150. https://doi.org/10.1016/j.psep.2010.10.003

    Article  Google Scholar 

  15. Dhakar, K., Chaudhary, K., Dvivedi, A., & Bembalge, O. (2019). An environment-friendly and sustainable machining method: Near-dry EDM. Materials and Manufacturing Processes, 34(12), 1307–1315. https://doi.org/10.1080/10426914.2019.1643471

    Article  Google Scholar 

  16. Jose, M., Sivapirakasam, S. P., & Surianarayanan, M. (2010). Analysis of aerosol emission and hazard evaluation of electrical discharge machining (EDM) process. Industrial Health, 48(4), 478–486. https://doi.org/10.2486/indhealth.MS1127

    Article  Google Scholar 

  17. Thiyagarajan, S., Sivapirakasam, S. P., Mathew, J., Surianarayanan, M., & Sundareswaran, K. (2014). Influence of workpiece materials on aerosol emission from die sinking electrical discharge machining process. Process Safety and Environmental Protection, 92(6), 739–749. https://doi.org/10.1016/j.psep.2014.01.001

    Article  Google Scholar 

  18. Wu, X., Liu, Y., Zhang, X., Dong, H., Zheng, C., Zhang, F., Sun, Q., Jin, H., & Ji, R. (2020). Sustainable and high-efficiency green electrical discharge machining milling method. Journal of Cleaner Production, 274, 123040. https://doi.org/10.1016/j.jclepro.2020.123040

    Article  Google Scholar 

  19. Baroi, B. K., Jagadish, & Patowari, P. K. (2022). A review on sustainability, health, and safety issues of electrical discharge machining. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(59), 1–38.https://doi.org/10.1007/s40430-021-03351-4

  20. Leppert, T. (2018). A review on ecological and health impacts of electro discharge machining (EDM). AIP Conference Proceedings, 2017(October). https://doi.org/10.1063/1.5056277

  21. Zhang, Z., Yu, H., Zhang, Y., Yang, K., Li, W., Chen, Z., & Zhang, G. (2018). Analysis and optimization of process energy consumption and environmental impact in electrical discharge machining of titanium superalloys. Journal of Cleaner Production, 198, 833–846. https://doi.org/10.1016/j.jclepro.2018.07.053

    Article  Google Scholar 

  22. Kiran, P., Mohanty, S., & Das, A. K. (2022). Sustainable surface modification of Ti-alloy using powder mixed in bio-dielectrics through micro-electrical discharge coating process. Journal of Cleaner Production, 362(May), 132375. https://doi.org/10.1016/j.jclepro.2022.132375

    Article  Google Scholar 

  23. Ming, W., Shen, F., Zhang, G., Liu, G., Du, J., & Chen, Z. (2021). Green machining: A framework for optimization of cutting parameters to minimize energy consumption and exhaust emissions during electrical discharge machining of Al 6061 and SKD 11. Journal of Cleaner Production, 285, 124889. https://doi.org/10.1016/j.jclepro.2020.124889

    Article  Google Scholar 

  24. Maragkidou, A., Jaghbeir, O., Hämeri, K., & Hussein, T. (2018). Aerosol particles (0.3–10 μm) inside an educational workshop−Emission rate and inhaled deposited dose. Building and Environment, 140, 80–89. https://doi.org/10.1016/j.buildenv.2018.05.031

    Article  Google Scholar 

  25. Chen, G., Li, S., Zhang, Y., Zhang, W., Li, D., Wei, X., He, Y., Bell, M. L., Williams, G., Marks, G. B., Jalaludin, B., Abramson, M. J., & Guo, Y. (2017). Effects of ambient PM1 air pollution on daily emergency hospital visits in China: An epidemiological study. The Lancet Planetary Health, 1(6), e221–e229. https://doi.org/10.1016/S2542-5196(17)30100-6

    Article  Google Scholar 

  26. Zwozdziak, A., Sówka, I., Willak-Janc, E., Zwozdziak, J., Kwiecińska, K., & Balińska-Miśkiewicz, W. (2016). Influence of PM1 and PM2.5 on lung function parameters in healthy schoolchildren—a panel study. Environmental Science and Pollution Research, 23(23), 23892–23901. https://doi.org/10.1007/s11356-016-7605-1

  27. Zia, M. K., Pervaiz, S., Anwar, S., & Samad, W. A. (2019). Reviewing sustainability interpretation of electrical discharge machining process using triple bottom line approach. In International Journal of Precision Engineering and Manufacturing - Green Technology, 6(5), 931–945). https://doi.org/10.1007/s40684-019-00043-2

  28. Boamah, P. O., Onumah, J., Takase, M., Bonsu, P. O., & Salifu, T. (2012). Air Pollution control techniques. Global Journal of Bioscience & Biotechnology, 1(2), 124–131.

    Google Scholar 

  29. de Castro, B. J. C., Sartim, R., Guerra, V. G., & Aguiar, M. L. (2020). Hybrid air filters: A review of the main equipment configurations and results. Process Safety and Environmental Protection, 144, 193–207. https://doi.org/10.1016/j.psep.2020.07.025

    Article  Google Scholar 

  30. de Castro, B. J. C., de Lacerda, C. R., de Melo, B. R., Sartim, R., & Aguiar, M. L. (2021). Performance assessment of a bench scale hybrid filter in the collection of nanoparticles. Process Safety and Environmental Protection, 154, 32–42. https://doi.org/10.1016/j.psep.2021.07.042

    Article  Google Scholar 

  31. Li, J., Wu, Q., Huang, Y., Sun, Z., Li, J., & Wu, D. (2022). Particulate matters filtration by a filter medium with pin holes: Modeling and experimental verification. Process Safety and Environmental Protection, 158, 282–290. https://doi.org/10.1016/j.psep.2021.12.012

    Article  Google Scholar 

  32. Singh, M., Ramkumar, J., & Jain, V. K. (2022). Electrical Discharge Machining. In V. K. Jain (Ed.), Advanced Machining Science (pp. 37–78). CRC Press. https://doi.org/10.1201/9780429160011-3

  33. Wang, X., Chen, L., Dan, B., & Wang, F. (2018). Evaluation of EDM process for green manufacturing. International Journal of Advanced Manufacturing Technology, 94(1–4), 633–641. https://doi.org/10.1007/s00170-017-0892-y

    Article  Google Scholar 

  34. Krugly, E., Ravikumar, P., Dabašinskaitė, L., Tichonovas, M., Ciuzas, D., Prasauskas, T., Baniukaitienė, O., Masionė, G., Kaunelienė, V., & Martuzevičius, D. (2023). Nanofibrous aerosol sample filter substrates: Design, fabrication, and characterization. Journal of Aerosol Science, 169. https://doi.org/10.1016/j.jaerosci.2022.106118

  35. Li, J., Zhou, F., & Li, S. (2017). Experimental study on the dust filtration performance with participation of water mist. Process Safety and Environmental Protection, 109, 357–364. https://doi.org/10.1016/j.psep.2017.04.006

    Article  Google Scholar 

  36. Morakinyo, O. M., Mukhola, M. S., & Mokgobu, M. I. (2021). Health risk analysis of elemental components of an industrially emitted respirable particulate matter in an urban area. International Journal of Environmental Research and Public Health, 18(7). https://doi.org/10.3390/ijerph18073653

  37. Shrivastava, R., Upreti, R. K., Seth, P. K., & Chaturvedi, U. C. (2002). Effects of chromium on the immune system. FEMS Immunology and Medical Microbiology, 34(1), 1–7. https://doi.org/10.1016/S0928-8244(02)00345-0

    Article  Google Scholar 

  38. Mohammed Abdul, K. S., Jayasinghe, S. S., Chandana, E. P. S., Jayasumana, C., & De Silva, P. M. C. S. (2015). Arsenic and human health effects: A review. Environmental Toxicology and Pharmacology, 40(3), 828–846. https://doi.org/10.1016/j.etap.2015.09.016

    Article  Google Scholar 

  39. Zhao, X., Li, Z., Tao, Y., Wang, D., Huang, J., Qiao, F., Lei, L., & Xing, Q. (2020). Distribution characteristics, source appointment, and health risk assessment of Cd exposure via household dust in six cities of China. Building and Environment, 172. https://doi.org/10.1016/j.buildenv.2020.106728

  40. Di Vaio, P., Magli, E., Caliendo, G., Corvino, A., Fiorino, F., Frecentese, F., Saccone, I., Santagada, V., Severino, B., Onorati, G., Freda, G. D. O., Manzo, C., & Perissutti, E. (2018). Heavy metals size distribution in PM10 and environmental-sanitary risk analysis in Acerra (Italy). Atmosphere, 9(2). https://doi.org/10.3390/atmos9020058

  41. Rostami, R., Kalan, M. E., Ghaffari, H. R., Saranjam, B., Ward, K. D., Ghobadi, H., Poureshgh, Y., & Fazlzadeh, M. (2021). Characteristics and health risk assessment of heavy metals in indoor air of waterpipe cafés. Building and Environment, 190. https://doi.org/10.1016/j.buildenv.2020.107557

  42. Chakraborty, D., & Mondal, N. K. (2021). Reduction in household air pollution and associated health risk: A pilot study with an improved cookstove in rural households. Clean Technologies and Environmental Policy, 23(7), 1993–2009. https://doi.org/10.1007/s10098-021-02098-9

    Article  Google Scholar 

  43. Wang, F., Wang, J., Han, M., Jia, C., & Zhou, Y. (2019). Heavy metal characteristics and health risk assessment of PM2.5 in students’ dormitories in a university in Nanjing, China. Building and Environment, 160. https://doi.org/10.1016/j.buildenv.2019.106206

  44. Wu, Y., Lu, B., Zhu, X., Wang, A., Yang, M., Gu, S., Wang, X., Leng, P., Zierold, K. M., Li, X., Tang, K. K., Fang, L., Huang, R., Xu, G., & Chen, L. (2019). Seasonal variations, source apportionment, and health risk assessment of heavy metals in pm2.5 in Ningbo, China. Aerosol and Air Quality Research, 19(9), 2083–2092. https://doi.org/10.4209/aaqr.2018.12.0452

  45. Ahamad, A., Janardhana Raju, N., Madhav, S., Gossel, W., Ram, P., & Wycisk, P. (2021). Potentially toxic elements in soil and road dust around Sonbhadra industrial region, Uttar Pradesh, India: Source apportionment and health risk assessment. Environmental Research, 202, 111685. https://doi.org/10.1016/j.envres.2021.111685

    Article  Google Scholar 

  46. Rajeev, P., Rajput, P., Singh, D. K., Singh, A. K., & Gupta, T. (2018). Risk assessment of submicron PM-bound hexavalent chromium during wintertime. Human and Ecological Risk Assessment, 24(6), 1453–1463. https://doi.org/10.1080/10807039.2017.1414581

    Article  Google Scholar 

  47. Nayak, S. K., & Nandimandalam, J. R. (2023). Impacts of climate change and coastal salinization on the environmental risk of heavy metal contamination along the odisha coast, India. Environmental Research, 238, 117175. https://doi.org/10.1016/j.envres.2023.117175

    Article  Google Scholar 

  48. Singh, M., & Ramkumar, J. (2020). Study of particulate matter emission during the electrical discharge machining process. Journal of Manufacturing Sciences, 09(2), 20–28.

    Google Scholar 

  49. Ji, X., Huang, J., Teng, L., Li, S., Li, X., Cai, W., Chen, Z., & Lai, Y. (2022). Advances in particulate matter filtration: Materials, performance, and application. Green Energy and Environment, 8(3), 673–697. https://doi.org/10.1016/j.gee.2022.03.012

    Article  Google Scholar 

  50. Teng, G., Shi, G., & Zhu, J. (2022). Influence of pleated geometry on the pressure drop of filters during dust loading process : Experimental and modelling study. Scientific Reports, 0123456789, 1–16. https://doi.org/10.1038/s41598-022-24838-7

    Article  Google Scholar 

  51. Lai, S., Sublemontier, O., Aubry, E., Rousseau, Y., Billard, A., & Briois, P. (2023). Aerosol - based functional nanocomposite coating process for large surface areas. Scientific Reports, 0123456789, 1–12. https://doi.org/10.1038/s41598-023-31933-w

    Article  Google Scholar 

Download references

Acknowledgements

“This study is supported by the Prime Ministers’ Research Contingency, India. The author gratefully thanks to Prime Ministers’ Research Fellowship, India”.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [Gopal Ashok Gupta], Methodology: [Gopal Ashok Gupta], Formal analysis and investigation: [Gopal Ashok Gupta, Mahavir Singh], Writing – original draft [Gopal Ashok Gupta, Mahavir Singh], Writing—review and editing: [Mahavir Singh, Janakarajan Ramkumar, Tarun Gupta, Sandip Patil], Supervision: [Janakarajan Ramkumar Tarun Gupta, Sandip Patil], Resources: [Janakarajan Ramkumar].

Corresponding author

Correspondence to Janakarajan Ramkumar.

Ethics declarations

Conflict of Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2485 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, G.A., Singh, M., Ramkumar, J. et al. Comprehensive Analysis of Heavy Metal Aerosol Emissions and Health Risk from the Electrical Discharge Machining Process: A Control and Mitigation Approach for Green Manufacturing. Int. J. of Precis. Eng. and Manuf.-Green Tech. (2024). https://doi.org/10.1007/s40684-024-00624-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40684-024-00624-w

Keywords

Navigation