Skip to main content
Log in

Multi-spark numerical simulation of the micro-EDM process: an extension of a single-spark numerical study

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The micro-electric discharge machining (micro-EDM) process had been studied by a number of researchers incorporating the single-spark numerical simulation technique. However, due to the stochastic nature of spark generation, complexities arise in determining the precise location of sparks and exact crater overlapping. Owing to this randomness, modelling of the micro-EDM process using the multi-spark approach has not been attempted hitherto. In this research work, an endeavour has been made to propose an improved concept of occurrence of sparks based on a minimum inter-electrode gap presented by the randomly assigned surface roughness to the tool and workpiece electrodes. The inadequacies associated with the single-spark modelling of the micro-EDM process can be overcome to a larger extent by deterministic estimation of the distinct spark location. The essential crater dimensions are inferred from single-spark simulation to estimate the exact number of sparks essential for the removal of a single layer in the multi-spark simulation. Numerically simulated single-crater dimensions are validated with the experimentally determined crater. Further, multi-spark simulation is performed, and successive layers are removed from the workpiece to generate a feature with a certain depth. The effect of the thermophysical properties of workpiece materials (copper, SS-EN 24, and Ti-6Al-4V) on the linear material removal rate (MRRl) is analysed. Simulation results illustrate that among the three materials, Ti-6Al-4V and SS-EN 24 result in the highest and lowest MRRl, respectively. The multi-spark approach presented in this work essentially differs from the occurrence of multiple sparks from a single-pulse input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43(13):1287–1300. https://doi.org/10.1016/S0890-6955(03)00162-7

    Article  Google Scholar 

  2. Qudeiri JEA, Mourad AHI, Ziout A, Abidi MH, Elkaseer A (2018) Electric discharge machining of titanium and its alloys: review. Int J Adv Manuf Technol 96:1319–1339. https://doi.org/10.1007/s00170-018-1574-0

    Article  Google Scholar 

  3. Shrivastava PK, Dubey AK (2014) Electrical discharge machining–based hybrid machining processes: a review. Proc Inst Mech Eng Part B J Eng Manuf 228(6):799–825. https://doi.org/10.1177/0954405413508939

  4. Singh M, Singh S (2019) Electrochemical discharge machining: a review on preceding and perspective research. Proc Inst Mech Eng Part B J Eng Manuf 233(5):1425–1449. https://doi.org/10.1177/0954405418798865

    Article  Google Scholar 

  5. Gil R, Sa´nchez JA, Plaza S, Ortega N, Izquierdo B and Pombo I (2014) Modeling recast layer and surface finish in the manufacturing of high–aspect ratio micro-tools using the inverse slab electrical discharge milling process. Proc Inst Mech Eng Part B J Eng Manuf 228(4): 553–562. https://doi.org/10.1177/0954405413502024

  6. Van Dijck FS, Dutré WL (1974) Heat conduction model for the calculation of the volume of molten metal in electric discharges. J Phys D Appl Phys 7(6):899–910. https://doi.org/10.1088/0022-3727/7/6/316

    Article  Google Scholar 

  7. DiBitonto DD, Eubank PT, Patel MR, Barrufet MA (1989) Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model. J Appl Phys 66(9):4095–4103. https://doi.org/10.1063/1.343994

    Article  Google Scholar 

  8. Patel MR, Barrufet MA, Eubank PT, DiBitonto DD (1989) Theoretical models of the electrical discharge machining process. II. The anode erosion model. J Appl Phys 66(9):4104–4111. https://doi.org/10.1063/1.343995

    Article  Google Scholar 

  9. Eubank PT, Patel MR, Barrufet MA, Bozkurt B (1993) Theoretical models of the electrical discharge machining process. III. The variable mass, cylindrical plasma model. J Appl Phys 73(11):7900–7909. https://doi.org/10.1063/1.353942

    Article  Google Scholar 

  10. Dhanik S, Joshi SS (2005) Modeling of a single resistance capacitance pulse discharge in micro-electro discharge machining. J Manuf Sci Eng 127(4):759–767. https://doi.org/10.1115/1.2034512

    Article  Google Scholar 

  11. Singh A, Ghosh A (1999) A thermo-electric model of material removal during electric discharge machining. Int J Mach Tools Manuf 39:669–682. https://doi.org/10.1016/S0890-6955(98)00047-9

    Article  Google Scholar 

  12. Allen P, Chen X (2007) Process simulation of micro electro-discharge machining on molybdenum. J Mater Process Technol 186(1–3):346–355. https://doi.org/10.1016/j.jmatprotec.2007.01.009

    Article  Google Scholar 

  13. Weingärtner E, Kuster F, Wegener K (2012) Modeling and simulation of micro electrical discharge machining. Procedia CIRP 2:74–78. https://doi.org/10.1016/j.procir.2012.05.043

    Article  Google Scholar 

  14. Joshi SN, Pande SS (2010) Thermo-physical modeling of die-sinking EDM process. J Manuf Process 12(1):45–56. https://doi.org/10.1016/j.jmapro.2010.02.001

    Article  Google Scholar 

  15. Shao B, Rajurkar KP (2015) Modelling of the crater formation in micro-EDM. Procedia CIRP 33:376–381. https://doi.org/10.1016/j.procir.2015.06.085

    Article  Google Scholar 

  16. Somashekhar KP, Panda S, Mathew J, Ramachandran N (2015) Numerical simulation of micro-EDM model with multi-spark. Int J Adv Manuf Technol 76(1–4):83–90. https://doi.org/10.1007/s00170-013-5319-9

    Article  Google Scholar 

  17. Tao J, Ni J, Shih AJ (2012) Modeling of the anode crater formation in electrical discharge machining. J Manuf Sci Eng 134:1–11. https://doi.org/10.1115/1.4005303

    Article  Google Scholar 

  18. Mujumdar SS, Curreli D, Kapoor SG, Ruzic D (2015) Modeling of melt-pool formation and material removal in micro-electro discharge machining. J Manuf Sci Eng 137(3):031007: 1-9. https://doi.org/10.1115/1.4029446

    Article  Google Scholar 

  19. Tang J, Yang X (2017) A novel thermo-hydraulic coupling model to investigate the crater formation in electrical discharge machining. J Phys D Appl Phys 50(365301):1–12. https://doi.org/10.1088/1361-6463/aa7bb7

    Article  Google Scholar 

  20. Kunieda M, Lauwers B, Rajurkar KP, Schumacher BM (2005) Advancing EDM through fundamental insight into the process. CIRP Ann - Manuf Technol 54(2):64–87. https://doi.org/10.1016/S0007-8506(07)60020-1

    Article  Google Scholar 

  21. Izquierdo B, Sánchez JA, Plaza S, Pombo I, Ortega N (2009) A numerical model of the EDM process considering the effect of multiple discharges. Int J Mach Tools Manuf 49(3–4):220–229. https://doi.org/10.1016/j.ijmachtools.2008.11.003

    Article  Google Scholar 

  22. Kunieda M, Muto H (2000) Development of multi-spark EDM. Ann CIRP 49(1):119–122. https://doi.org/10.1016/S0007-8506(07)62909-6

    Article  Google Scholar 

  23. Yang X, Yang K, Yutao L, Wang L (2016) Study on characteristic of multi-spark EDM method by using capacity coupling. Procedia CIRP 42:40–45. https://doi.org/10.1016/j.procir.2016.02.182

    Article  Google Scholar 

  24. Jadhav HP, Mohanty PK, Das S (2018) Numerical simulation of multi-spark electric discharge machining analysis for Ti6Al4V alloy drilling. Mater Today Proc 5:28337–28346. https://doi.org/10.1016/j.matpr.2018.10.118

    Article  Google Scholar 

  25. Liu JF, Guo YB (2016) Thermal modeling of EDM with progression of massive random electrical discharges. Procedia Manuf 5:495–507. https://doi.org/10.1016/j.promfg.2016.08.041

    Article  Google Scholar 

  26. Morimoto K, Kunieda M (2009) Sinking EDM simulation by determining discharge locations based on discharge delay time. CIRP Ann - Manuf Technol 58:221–224. https://doi.org/10.1016/j.cirp.2009.03.069

    Article  Google Scholar 

  27. Jithin S, Bhandarkar UV, Joshi SS (2020) Multi-spark model for predicting surface roughness of electrical discharge textured surfaces. Int J Adv Manuf Technol 106:3741–3758. https://doi.org/10.1007/s00170-019-04841-5

    Article  Google Scholar 

  28. Marashi H, Jafarlou DM, Sarhan AAD, Hamdi M (2016) State of the art in powder mixed dielectric for EDM applications. Precis Eng 46:11–33 https://doi.org/10.1016/j.precisioneng.2016.05.010

    Article  Google Scholar 

  29. Rajeswari R, Shunmugam MS (2019) Comparative evaluation of powder-mixed and ultrasonic-assisted rough die-sinking electrical discharge machining based on pulse characteristics. Proc Inst Mech Eng Part B J Eng Manuf 1–16. https://doi.org/10.1177/0954405419840569

  30. Masuzawa T, Tonshoff HK (1997) Three-dimensional micromachining by machine tools. Ann CIRP 46(2):621–628. https://doi.org/10.1016/S0007-8506(07)60882-8

    Article  Google Scholar 

  31. Pérez R, Carron J, Rappaz M, Wälder G, Revaz B, Flükiger R (2007) Measurement and metallurgical modeling of the thermal impact of EDM discharges on steel. Proc 15th Int Symp Electromachining. ISEM 2007:17–22

    Google Scholar 

  32. Yadav V, Jain VK, Dixit PM (2002) Thermal stresses due to electrical discharge machining. Int J Mach Tools Manuf 42:877–888. https://doi.org/10.1016/S0890-6955(02)00029-9

    Article  Google Scholar 

  33. Shabgard MR, Gholipoor A, Mohammadpourfard M (2019) Investigating the effects of external magnetic field on machining characteristics of electrical discharge machining process, numerically and experimentally. Int J Adv Manuf Technol 102:55–65. https://doi.org/10.1007/s00170-018-3167-3

    Article  Google Scholar 

  34. Yeo SH, Kurnia W, Tan PC (2007) Electro-thermal modelling of anode and cathode in micro-EDM. J Phys D Appl Phys 40(8):2513–2521. https://doi.org/10.1088/0022-3727/40/8/015

    Article  Google Scholar 

  35. Tang L, Ji Y, Ren L, Zhai KG, Huang TQ, Fan QM, Zhang JJ, Liu J (2019) Thermo-electrical coupling simulation of powder mixed EDM SiC/Al functionally graded materials. Int J Adv Manuf Technol 105:2615–2628. https://doi.org/10.1007/s00170-019-04445-z

    Article  Google Scholar 

  36. Xia H, Kunieda M, Nishiwaki N (1996) Removal amount difference between anode cathode in EDM process. Int J Electr Mac 1:45–52

    Google Scholar 

  37. Shankar P, Jain VK, Sundararajan T (1997) Analysis of spark profiles during EDM process. Mach Sci Technol 1(2):195–217. https://doi.org/10.1080/10940349708945647

    Article  Google Scholar 

  38. Yadava V, Jain VK, Dixit PM (2004) Theoretical analysis of thermal stresses in electro- discharge diamond grinding. Mach Sci Technol 8(1):119–140. https://doi.org/10.1081/MST-120034250

    Article  Google Scholar 

  39. Xuyang C, Kai Z, Chunmei W, Zhipeng H, Yiru Z (2015) A study on plasma channel expansion in micro-EDM. Mater Manuf Process 31(4):381–390. https://doi.org/10.1080/10426914.2015.1059445

    Article  Google Scholar 

  40. Kiyak M, Aldemir BE, Altan E (2015) Effects of discharge energy density on wear rate and surface roughness in EDM. Int J Adv Manuf Technol 79:513–518. https://doi.org/10.1007/s00170-015-6840-9

    Article  Google Scholar 

  41. Kitamura T, Kunieda M (2014) Clarification of EDM gap phenomena using transparent electrodes. CIRP Ann - Manuf Technol 63:213–216. https://doi.org/10.1016/j.cirp.2014.03.059

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ramkumar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 1 Thermophysical properties of the workpiece materials
Table 2 Input parameters related to the RC-based power generator
Table 3 Crater diameter and depth for different materials from single-spark simulation
Table 4 Number of sparks required for multi-spark numerical simulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Saxena, P., Ramkumar, J. et al. Multi-spark numerical simulation of the micro-EDM process: an extension of a single-spark numerical study. Int J Adv Manuf Technol 108, 2701–2715 (2020). https://doi.org/10.1007/s00170-020-05566-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05566-6

Keywords

Navigation