Skip to main content
Log in

Study on Strain Energy Transfer and Efficiency in Spatial Micro-forming of Metal

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

In spatial micro-fabrication on metallic surface, the mechanical machining consumes material shear deformation energy, while the laser machining energy is greatly converted into material melting heat energy. In production, the micron-scale material-removal machining requires the CNC system to long-time tool path interpolation for high energy-consumption. According to dynamics and kinematics of metallic plastic deformation, a strain energy transfer is proposed to deform micro-topographic shapes by differentiated surface stress. The objective is to realize the precision forming of spatial microstructure surface through the strain energy conversion and conservation. First, the energy transfer and strain variations were modelled in relation to die curvature radius, workpiece thickness, initial microstructure angle and depth. Then, the strain energy consumption was investigated in relation to material properties, die movement, and micro dimensions. Finally, it was applied to industrial cold-pressing. It is shown that the strain energy of a single microstructure formation transfers from centre to outer part. The spatial microstructure forming may change from diversified strain stage to uniform strain state with the highest energy efficiency at a critical strain energy, while the surface roughness remains unchanged. Under the strain energy transfer, the microstructure shape changes with increasing energy consumption to a critical value. The metal compressive strength, die curvature radius and workpiece thickness promotes energy consumption, while descending velocity promotes processing efficiency. By controlling the energy conversion, the spatial microstructure sizes may be fabricated with an error of about 1.0% and the energy consumption of about 10 mm3/J. In industrial production, it contributes high energy efficiency without coolant pollutant in contrast to mechanical machining and laser machining. As a result, the strain energy conversion and conservation may be regarded as an evaluation for an eco-friendly micro-fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16.
Fig. 17

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

Abbreviations

a :

Semi-major axes (mm)

a p :

Cutting depth (μm)

b :

Semi-minor axes (mm)

d :

Spatial microgroove depth (μm)

d 0 :

Initial microgroove depth (μm)

d m :

Microstructural dimension (μm)

d tar :

Target microgroove depth (μm)

d z :

Vertical displacement of point (mm)

e c :

Mean centre deviation (μm)

e d :

Formation errors of spatial microgroove depth (μm)

e d 0 :

Machining error of initial microgroove depth in grinding (μm)

e α :

Formation errors of spatial microgroove angle (°)

e α 0 :

Machining errors of initial microgroove angle in grinding (°)

E b :

Critical strain energy consumption (J)

E c :

Errors between the macro curvature radii of upper die and microgrooves (μm)

E de :

Angle variation per unit energy consumption (°/J)

E l :

Elasticity modulus (GPa)

E m :

Maximum strain energy consumption (J)

E n :

Strain energy consumption (J)

E r :

Material consumption per unit energy consumption (mm3/J)

E s :

Strain energy of a single microgroove

F :

Loading force (kN)

F b :

Critical pressing force (kN)

F m :

Maximum loading force (kN)

G :

Shear modules (GPa)

\(\overline{K }\Delta \alpha\) :

Angle variation of orthogonal test results (°)

\(\overline{K }\Delta d\) :

Depth variation of orthogonal test results (μm)

K m :

Material coefficient

N :

Wheel speed (rpm)

R :

Workpiece curvature radius (mm)

R 0 :

Die curvature radius (mm)

R a :

Mean surface roughness (nm)

\({R}_{\overline{K}\Delta d }\) :

Range of depth variation in experiment (μm)

\({R}_{\overline{K}{\Delta d }^{*}}\) :

Range of depth variation in simulation (μm)

\({R}_{\overline{K}\Delta \alpha }\) :

Range of angle variation in experiment (°)

\({R}_{\overline{K}{\Delta \alpha }^{*}}\) :

Range of angle variation in simulation (°)

t a :

Processing time per unit area (s/mm2)

v :

Descending velocity (mm/s)

v f :

Feed rate (mm/min)

v z :

Vertical velocity of point (mm/s)

z :

Upper die displacement (mm)

z b :

Critical displacement in experiment (mm)

z b * :

Critical displacement in simulation (mm)

z s :

Critical shearing displacement (mm)

α :

Spatial microgroove angle (°)

α 0 :

Initial microgroove angle (°)

α tar :

Target microgroove angle (°)

δ 0 :

Workpiece thickness (mm)

δ c :

Applicable thickness range (mm)

Δd :

Microgroove depth variation in experiment (μm)

Δd * :

Microgroove depth variation in simulation (μm)

Δα :

Microgroove angle variation in experiment (°)

Δα * :

Microgroove angle variation in simulation (°)

μ :

Poisson ratio

ρ :

Density (g/cm3)

σ 0 .2 :

Yield strength (MPa)

σ b :

Compressive strength (MPa)

References

  1. Franciosi, C., Voisin, A., Miranda, S., Riemma, S., & Iung, B. (2020). Measuring maintenance impacts on sustainability of manufacturing industries: from a systematic literature review to a framework proposal. Journal of Cleaner Production, 260, 121065.

    Article  Google Scholar 

  2. Hou, B., Wu, C., Li, X., Huang, J., & Chen, M. (2021). Contact line-based model for the Cassie-Wenzel transition of a sessile droplet on the hydrophobic micropillar-structured surfaces. Applied Surface Science, 542, 148611.

    Article  CAS  Google Scholar 

  3. Xu, W., Wang, H., Yu, Y., Sun, Z., Li, H., Zhao, Y., & Fu, Y. (2022). Study on applicability of microgroove erosion mitigation method based on stress–erosion coupling simulation. Tribology International, 174, 107746.

    Article  Google Scholar 

  4. Chu, H., Xu, N., Yu, X., Jiang, H., Ma, W., & Qiao, F. (2022). Review of surface modification in pool boiling application: coating manufacturing process and heat transfer enhancement mechanism. Applied Thermal Engineering, 215, 119041.

    Article  CAS  Google Scholar 

  5. Klement, R., Drdlíková, K., Kachlík, M., Drdlík, D., Galusek, D., & Maca, K. (2021). Photoluminescence and optical properties of Eu3+/Eu2+-doped transparent Al2O3 ceramics. Journal of the european ceramic society, 41, 4896–4906.

    Article  CAS  Google Scholar 

  6. Sun, Y., Rong, Y., Zhao, Y., Zhao, Y., Hang, R., Yao, X., & Chu, P. K. (2021). Electrochemical stability, corrosion behavior, and biological properties of Ni–Ti–O nanoporous layers anodically on NiTi alloy. Corrosion Science, 179, 109104.

    Article  CAS  Google Scholar 

  7. Li, J., Wang, Y., Liu, K., Zhao, D., Jiang, S., Yang, Y., & Yu, Q. (2023). Tough-brittle transition mechanism and specific cutting energy analysis during cryogenic machining of Ti–6Al–4V alloy. Journal of Cleaner Production, 383, 135533.

    Article  CAS  Google Scholar 

  8. Lu, C., & Shi, J. (2022). Simultaneous consideration of relative density, energy consumption, and build time for selective laser melting of Inconel 718: A multi-objective optimization study on process parameter selection. Journal of Cleaner Production, 369, 133284.

    Article  CAS  Google Scholar 

  9. Xie, J., Li, Y., & Yang, L. (2015). Study on 5-axial milling on microstructured freeform surface using the macro-ball cutter patterned with micro-cutting-edge array. CIRP Annals, 64, 101–104.

    Article  Google Scholar 

  10. Wang, Y., Zou, B., & Huang, C. (2019). Tool wear mechanisms and micro-channels quality in micro-machining of Ti-6Al-4V alloy using the Ti (C7N3)-based cermet micro-mills. Tribology International, 134, 60–76.

    Article  CAS  Google Scholar 

  11. Wu, B., & Zong, W. (2022). A modified diamond micro chiseling method for machining large scale retroreflective microstructure on nickel phosphorus alloy. Journal of Materials Processing Technology, 307, 117676.

    Article  CAS  Google Scholar 

  12. Lin, B., Huang, C., Tian, K., Lee, P., Su, W., & Xu, L. (2023). Laser patterning technology based on nanosecond pulsed laser for manufacturing bifacial perovskite solar modules. International Journal of Precision Engineering and Manufacturing-Green Technology, 10, 123–139.

    Article  Google Scholar 

  13. Park, J., Choi, S., Baek, S., Park, S., Huang, Y., & Lee, J. (2023). An investigation of the properties of 3D printing materials according to additive manufacturing conditions using ultrasonic wave. International Journal of Precision Engineering and Manufacturing, 24, 1041–1052.

    Article  Google Scholar 

  14. Cailloux, T., Pacquentin, W., Narasimalu, S., Belnou, F., Schuster, F., Maskrot, H., Wang, C., Zhou, K., & Balbaud-Celerier, F. (2022). Influence of trapezoidal groove geometry on the microstructure and mechanical properties of stainless steel 316L parts repaired by laser metal deposition. Materials Science and Engineering: A, 859, 144218.

    Article  CAS  Google Scholar 

  15. Borasi, L., Frasca, S., Nicolet-Dit-Felix, K., Charbon, E., & Mortensen, A. (2022). Coupling silicon lithography with metal casting. Applied Materials Today, 29, 101647.

    Article  Google Scholar 

  16. Shrivastava, P., & Tandon, P. (2019). Microstructure and texture based analysis of forming behavior and deformation mechanism of AA1050 sheet during single point incremental forming. Journal of Materials Processing Technology, 266, 292–310.

    Article  CAS  Google Scholar 

  17. Wang, H., Vivek, A., Wang, Y., Viswanathan, G., & Daehn, G. (2017). High strain rate embossing with copper plate. International Journal of Material Forming, 10, 697–705.

    Article  Google Scholar 

  18. He, D., Zhu, J., Lai, Z., Liu, Y., & Yang, X. (2013). An experimental study of deformation mechanism and microstructure evolution during hot deformation of Ti–6Al–2Zr–1Mo–1V alloy. Materials & Design, 46, 38–48.

    Article  CAS  Google Scholar 

  19. Zou, W., Sackmann, J., Striegel, A., Worgull, M., & Schomburg, W. K. (2019). Comparison of hot embossing micro structures with and without ultrasound. Microsystem Technologies, 25, 4185–4195.

    Article  Google Scholar 

  20. Li, L., Yang, G., Lee, W. B., Ng, M. C., & Chan, K. L. (2020). Carbide-bonded graphene-based Joule heating for embossing fine microstructures on optical glass. Applied Surface Science, 500, 144004.

    Article  CAS  Google Scholar 

  21. Kim, J., Lee, S., Ali Asgar, M., Refatul Haq, M., & Kim, S. M. (2023). Metal micro-forming of AA5052 using high-durable glassy carbon mold for efficient boiling heat transfer. International Journal of Precision Engineering and Manufacturing-Green Technology, 10, 353–365.

    Article  Google Scholar 

  22. Lee, M. G., & Korkolis, Y. P. (2018). Advances in plastic forming of metals. Metals, 8(4), 272.

    Article  Google Scholar 

  23. Hsieh, C., Hsiung, H., Lu, Y., Sung, C., & Wang, W. (2007). Fabrication of subwavelength metallic structures by using a metal direct imprinting process. Journal of physics D-applied physics, 40, 3440.

    Article  ADS  CAS  Google Scholar 

  24. Wen, W., Huang, Z., Li, Z., Fu, J., Ruan, W., Ren, S., Zhang, Z., Liang, X., & Ma, J. (2021). Multi-scale cold embossing of CoCrFeNiMn high entropy alloy with ultra-high temperature durability. Applied Materials Today, 25, 101233.

    Article  Google Scholar 

  25. Li, L., Ma, R., Zhao, J., & Zhai, R. (2023). Study on hot deformation behavior and bending forging process of 7075 aluminum alloy. International Journal of Precision Engineering and Manufacturing, 24, 729–744.

    Article  Google Scholar 

  26. Camberg, A., Andreiev, A., Pramanik, S., Hoyer, K.-P., Tröster, T., & Schaper, M. (2022). Strength enhancement of AlMg sheet metal parts by rapid heating and subsequent cold die stamping of severely cold-rolled blanks. Materials Science and Engineering: A, 831, 142312.

    Article  CAS  Google Scholar 

  27. Zhang, L., Huang, G., Zhang, H., & Song, B. (2011). Cold stamping formability of AZ31B magnesium alloy sheet undergoing repeated unidirectional bending process. Journal of Materials Processing Technology, 211, 644–649.

    Article  CAS  Google Scholar 

  28. Yu, G., Zhao, J., Wang, C., Zhai, R., & Ma, R. (2017). Development of a cold stamping process for forming single-welded elbows. The International Journal of Advanced Manufacturing Technology, 88, 1911–1921.

    Article  Google Scholar 

  29. Gu, Z., Li, S., Zhao, L., Zhu, L., & Yu, G. (2019). Finite element simulation and experimental investigations of cold stamping forming defect of A588-A thick weathering steel bogie lower cover. The International Journal of Advanced Manufacturing Technology, 104, 1275–1283.

    Article  Google Scholar 

  30. Jiang, Z., Yang, H., Zhan, M., Yue, Y., Liu, J., Xu, X., & Li, G. (2010). Establishment of a 3D FE model for the bending of a titanium alloy tube. International journal of mechanical sciences, 52, 1115–1124.

    Article  Google Scholar 

  31. Müller, K. B. (2006). Bending of extruded profiles during extrusion process. International Journal of Machine Tools and Manufacture., 46, 1238–1242.

    Article  Google Scholar 

  32. Liu, W., & Iizuka, T. (2018). Examination of evaluation method of uniaxial compressive property of cold-formed duplex embossed sheet metal by FEM analysis. Journal of Physics: Conference Series, 1063, 012162.

    Google Scholar 

  33. Abdullah, A., Sapuan, S., Samad, Z., Khaleed, H., & Aziz, N. (2013). Numerical investigation of geometrical defect in cold forging of an AUV blade pin head. Journal of Manufacturing processes, 15, 141–150.

    Article  Google Scholar 

  34. Dwivedi, R., & Agnihotri, G. (2015). Numerical simulation of aluminum and brass material cups in deep drawing process. Materials Today: Proceedings, 2, 1942–1950.

    CAS  Google Scholar 

  35. Ghavami, P. (2014). Mechanics of materials: An introduction to engineering technology. Springer.

    Google Scholar 

  36. Ma, J., & Welo, T. (2021). Analytical springback assessment in flexible stretch bending of complex shapes. International Journal of Machine Tools and Manufacture, 160, 103653.

    Article  Google Scholar 

  37. He, W., Yao, P., Chu, D., Sun, H., Lai, Q., Wang, Q., Wang, P., Qu, S., & Huang, C. (2022). Controllable hydrophilic titanium surface with micro-protrusion or micro-groove processed by femtosecond laser direct writing. Optics and Laser Technology, 152, 108082.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51975219) and (52375493), the Basic and Applied Basic Research Foundation of GuangDong Province (2022A1515220053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Xie or Quanpeng He.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Xie, J., He, Q. et al. Study on Strain Energy Transfer and Efficiency in Spatial Micro-forming of Metal. Int. J. of Precis. Eng. and Manuf.-Green Tech. 11, 407–425 (2024). https://doi.org/10.1007/s40684-023-00560-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-023-00560-1

Keywords

Navigation