Skip to main content

Advertisement

Log in

Accelerate the Shift to Green Energy with PVDF Based Piezoelectric Nanogenerator

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

The two greatest difficulties humanity faces are environmental catastrophe and air degradation, and renewable energy from the ocean, solar, and wind offers a possible answer. This research describes a piezoelectric energy harvester (PENG) for harvesting low-frequency water wave energy. The poled PENG device based on a ferroelectric polymer polyvinylidene fluoride (PVDF) delivers a voltage of 32 V and a current of 130 nA. The PENG achieves a power of 1.38 µW at 500 MΩ. The low-frequency vibrations generated from the laboratory equipment were effectively converted into usable electrical energy. Furthermore, the output performance of four PVDF-based PENG units connected in parallel was placed inside a 3D printed housing after being exposed to water waves delivered a voltage of 1.1 V and current of 170 nA. This work presents an efficient approach for gathering low-frequency wave energy and realizing the blue-energy dream. This study offers a cost-effective approach for gathering low-frequency water wave energy and realizing the blue-energy vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bilgen, S. (2014). Structure and environmental impact of global energy consumption. Renewable and Sustainable Energy Reviews, 38, 890–902.

    Article  Google Scholar 

  2. Holechek, J.L., Geli H.M.E., Sawalhah, M.N., Valdez R. (2022). A global assessment: can renewable energy replace fossil fuels by 2050?, Sustainability, 14, 4792. https://doi.org/10.3390/su14084792.

  3. Wang, Y. (2023). What drives sustainable development? Evaluating the role of oil and coal resources for selected resource rich economies. Resources Policy, 80, 103078.

    Article  Google Scholar 

  4. Mukhtarov, S., Aliyev, F., Aliyev, J., & Ajayi, R. (2023). Renewable Energy Consumption and Carbon Emissions: Evidence from an Oil-Rich Economy. Sustainability, 15(1), 134.

    Article  Google Scholar 

  5. Keremane, K. (2022). Power from Sunshine: Solar Energy Harvesting in order to solve the World Energy Crisis. Journal of Advanced Mass Spectroscopy, 1(1), 12–13.

    Google Scholar 

  6. Hunt, J. D., Nascimento, A., ten Caten, C. S., Tomé, F. M. C., Schneider, P. S., Thomazoni, A. L. R., de Castro, N. J., Brandão, R., de Freitas, M. A. V., & Martini, J. S. C. (2022). Energy crisis in Brazil: Impact of hydropower reservoir level on the river flow. Energy, 239, 121927.

    Article  Google Scholar 

  7. Song, C., Zhu, X., Wang, M., Yang, P., Chen, L., Hong, L., & Cui, W. (2022). Recent advances in ocean energy harvesting based on triboelectric nanogenerators. Sustainable Energy Technologies and Assessments, 53, 102767.

    Article  Google Scholar 

  8. Ellabban, O., Abu-Rub, H., & Blaabjerg, F. (2014). Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and sustainable energy reviews, 39, 748–764.

    Article  Google Scholar 

  9. Liu, X., Chen, Z., Si, Y., Qian, P., Wu, H., Cui, L., & Zhang, D. (2021). A review of tidal current energy resource assessment in China. Renewable and Sustainable Energy Reviews, 145, 111012.

    Article  Google Scholar 

  10. Antonio, F. O. (2010). Wave energy utilization: A review of the technologies. Renewable and sustainable energy reviews, 14(3), 899–918.

    Article  Google Scholar 

  11. Dohan, K. (2017). Ocean surface currents from satellite data. Journal of Geophysical Research: Oceans, 122(4), 2647–2651.

    Article  Google Scholar 

  12. Arias, F. J. (2020). De Las Heras, Ocean salt basins energy harvesting. Applied Ocean Research, 98, 102074.

    Article  Google Scholar 

  13. Cho, A. (2015). To catch a wave. American Association for the Advancement of Science, 347, 1084–1088.

    Article  Google Scholar 

  14. Falnes, J. (2007). A review of wave-energy extraction. Marine structures, 20(4), 185–201.

    Article  Google Scholar 

  15. Panda, S., Hajra, S., Jeong, H., Panigrahi, B. K., Pakawanit, P., Dubal, D., Hong, S., & Kim, H. J. (2022). Biocompatible CaTiO3-PVDF composite-based piezoelectric nanogenerator for exercise evaluation and energy harvesting. Nano Energy, 102, 107682.

    Article  Google Scholar 

  16. Sahu, M., Hajra, S., Jadhav, S., Panigrahi, B. K., Dubal, D., & Kim, H. J. (2022). Bio-waste composites for cost-effective self-powered breathing patterns monitoring: An insight into energy harvesting and storage properties. Sustainable Materials and Technologies, 32, e00396.

    Article  Google Scholar 

  17. Kojčinović, J., Sahu, M., Hajra, S., Tatar, D., Klaser, T., Skoko, Ž., Jagličić, Z., Sadrollahi, E., Litterst, F. J., Kim, H. J., & Djerdj, I. (2022). Nanocrystalline triple perovskite compounds A3Fe2BO9 (A = Sr, Ba; B = W, Te) with ferromagnetic and dielectric properties for triboelectric energy harvesting. Materials Chemistry Frontiers, 6(9), 1116–1128.

    Article  Google Scholar 

  18. Xue, H., Yang, Q., Wang, D., Luo, W., Wang, W., Lin, M., Liang, D., & Luo, Q. (2017). A wearable pyroelectric nanogenerator and self-powered breathing sensor. Nano Energy, 38, 147–154.

    Article  Google Scholar 

  19. Yong, S., Wang, J., Yang, L., Wang, H., Luo, H., Liao, R., & Wang, Z. L. (2021). Auto-switching self-powered system for efficient Broad-Band wind Energy Harvesting based on dual-rotation Shaft Triboelectric Nanogenerator. Advanced Energy Materials, 11(26), 2101194.

    Article  Google Scholar 

  20. Wang, Z. L. (2009). ZnO nanowire and nanobelt platform for nanotechnology. Materials Science and Engineering: R: Reports, 64(3–4), 33–71.

    Article  Google Scholar 

  21. Maiti, S., Kumar Karan, S., Lee, J., Kumar Mishra, A., Bhusan Khatua, B., & Kim, J. K. (2017). Bio-waste onion skin as an innovative nature-driven piezoelectric material with high energy conversion efficiency. Nano Energy, 42, 282–293.

    Article  Google Scholar 

  22. Panda, S., Hajra, S., Mistewicz, K., In-na, P., Sahu, M., Rajaitha, P. M., & Kim, H. J. (2022). Piezoelectric energy harvesting systems for biomedical applications. Nano Energy, 100, 107514.

    Article  Google Scholar 

  23. Li, T., & Lee, P. S. (2022). Piezoelectric Energy Harvesting Technology: From materials, structures, to applications. Small Structures, 3(3), 2100128.

    Article  Google Scholar 

  24. Khatua, D. K., & Kim, S. J. (2022). Perspective on the development of high performance flexible piezoelectric energy harvesters. Journal of Materials Chemistry C, 10(8), 2905–2924.

    Article  Google Scholar 

  25. Sharma, P., Hajra, S., Sahoo, S., Rout, P. K., & Choudhary, R. N. P. (2017). Structural and electrical characteristics of gallium modified PZT ceramics. Processing and Application of Ceramics, 11(3), 171–176.

    Article  Google Scholar 

  26. Acosta, M., Novak, N., Rojas, V., Patel, S., Vaish, R., Koruza, J., RossettiJr., G. A., & Rödel, J. (2017). BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Applied Physics Reviews, 4(4), 041305.

    Article  Google Scholar 

  27. Daben, Y. (1990). Composite piezoelectric film made from PVDF polymer and PCM–PZT ferroelectric ceramics. Ferroelectrics, 101, 291–296.

    Article  Google Scholar 

  28. Ruan, L., Yao, X., Chang, Y., Zhou, L., Qin, G., & Zhang, X. (2018). Properties and Applications of the β phase poly(vinylidene fluoride). Polymers, 10(3), 228.

    Article  Google Scholar 

  29. Hajra, S., Sahoo, S., & Choudhary, R. N. P. (2018). Fabrication and electrical characterization of (Bi0.49Na0.49Ba0.02)TiO3-PVDF thin film composites. Journal of Polymer Research, 26(1), 14.

    Article  Google Scholar 

  30. Ryu, C., Hajra, S., Sahu, M., Jung, S. I., Jang, I. R., & Kim, H. J. (2022). PVDF-bismuth titanate based self-powered flexible tactile sensor for biomechanical applications. Materials Letters, 309, 131308.

    Article  Google Scholar 

  31. Maity, K., Garain, S., Henkel, K., Schmeißer, D., & Mandal, D. (2020). Self-powered human-health monitoring through aligned PVDF nanofibers interfaced skin-interactive Piezoelectric Sensor. ACS Applied Polymer Materials, 2(2), 862–878.

    Article  Google Scholar 

  32. Dash, S., Choudhary, R. N. P., & Goswami, M. N. (2017). Enhanced dielectric and ferroelectric properties of PVDF-BiFeO3 composites in 0–3 connectivity. Journal of Alloys and Compounds, 715, 29–36.

    Article  Google Scholar 

  33. Dash, S., Choudhary, R. N. P., Kumar, A., & Goswami, M. N. (2019). Enhanced dielectric properties and theoretical modeling of PVDF–ceramic composites. Journal of Materials Science: Materials in Electronics, 30(21), 19309–19318.

    Google Scholar 

  34. Cai, X., Lei, T., Sun, D., & Lin, L. (2017). A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Advances, 7(25), 15382–15389.

    Article  Google Scholar 

  35. Khadtare, S., Ko, E. J., Kim, Y. H., Lee, H. S., & Moon, D. K. (2019). A flexible piezoelectric nanogenerator using conducting polymer and silver nanowire hybrid electrodes for its application in real-time muscular monitoring system. Sensors and Actuators A: Physical, 299, 111575.

    Article  Google Scholar 

  36. Zhao, Q., Yang, L., Chen, K., Ma, Y., Peng, Q., Ji, H., & Qiu, J. (2020). Flexible textured MnO2 nanorods/ PVDF hybrid films with superior piezoelectric performance for energy harvesting application. Composites Science and Technology, 199, 108330.

    Article  Google Scholar 

  37. Karan, S. K., Mandal, D., & Khatua, B. B. (2015). Self-powered flexible Fe-doped RGO/PVDF nanocomposite: An excellent material for a piezoelectric energy harvester. Nanoscale, 7(24), 10655–10666.

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by Basic Science Research Program through the DGIST R&D (22-RT-01; 22-SENS-01) funded by the Ministry of Science and ICT of Korea and DGIST Undergraduate Group Research Program (UGRP) Grant (2022020012). The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Contributions

JL: Investigation, Data Curation; SH: Conceptualization, Writing-Original Draft; SP: Writing- review and editing, Visualization; WO: Data Curation; YO: Investigation; HS: Investigation; YKM: Writing-Review and Editing; HJK: Supervision, Funding Acquisition, Validation, Writing- review and editing.

Corresponding author

Correspondence to Hoe Joon Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Hajra, S., Panda, S. et al. Accelerate the Shift to Green Energy with PVDF Based Piezoelectric Nanogenerator. Int. J. of Precis. Eng. and Manuf.-Green Tech. 11, 233–241 (2024). https://doi.org/10.1007/s40684-023-00539-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-023-00539-y

Keywords

Navigation