Skip to main content

Triboelectric Nanogenerator Based on Pendulum Plate Wave Energy Converter

  • Conference paper
  • First Online:
Advanced Manufacturing and Automation XII (IWAMA 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 994))

Included in the following conference series:

  • 959 Accesses

Abstract

Ocean wave energy is a promising renewable energy source, but harvesting this irregular low-frequency energy is challenging due to technological limitations. In this paper, a pendulum plate-based triboelectric nanogenerator (PP-TENG) is reported, which absorbs wave energy through the pendulum plate installed at the bottom to generate a swing effect, driving the motion of the upper TENG power generation unit, and generating charge transfer on the surface of polymer PTFE and nylon film. The PP-TENG was tested after building a semi-physical simulation test platform. It can simultaneously light 33 commercial LED lamps, and the current under short-circuit conditions can reach 2.45 μA, the voltage under open-circuit conditions can reach 212 V. After PP-TENG is connected in series with a resistor with a resistance value of 3 * 105Ω, its maximum peak power density can reach 6.74 mw/m2. It indicates that PP-TENG has low fabrication cost and excellent energy conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wave energy in the UK: Status review and future perspectives Siya Jin∗, Deborah Greaves

    Google Scholar 

  2. Global oceanic wave energy resource dataset with the Maritime Silk Road as a case study

    Google Scholar 

  3. Taveira-Pinto, F., Iglesias, G., Rosa-Santos, P., Deng, Z.D.: Preface to special topic: marine renewable energy. J. Renew. Sustain. Energy 7, 061601 (2015)

    Article  Google Scholar 

  4. Shao, H., Cheng, P., Chen, R., Xie, L., Sun, N., Shen, Q., et al.: Triboelectric–electromagnetic hybrid generator for harvesting blue energy. Nano-micro Lett. 10, 54 (2018)

    Article  Google Scholar 

  5. Fan, F.R., Tang, W., Yao, Y., Luo, J., Zhang, C., Wang, Z.L.: Complementary power output characteristics of electro-magnetic generators and triboelectric generators. Nanotechnology 25, 135402 (2014)

    Article  Google Scholar 

  6. Zhu, G., Zhou, Y.S., Bai, P., Meng, X.S., Jing, Q., Chen, J., et al.: A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 26, 3788–3796 (2014)

    Article  Google Scholar 

  7. Niu, S., Liu, Y., Wang, S., et al.: Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 25(43), 6184–6193 (2013)

    Article  Google Scholar 

  8. Zhang, X., Zhang, Y., Tian, B., et al.: Review of nano-phase effects in high strength and conductivity copper alloys. Nanotechnol. Rev. 8(1), 383–395 (2019)

    Article  Google Scholar 

  9. Jiang, T., Zhang, L.M., Chen, X., et al.: Structural optimization of triboelectric nanogenerator for harvesting water wave energy. ACS Nano 9(12), 12562–12572 (2015)

    Article  Google Scholar 

  10. Xu, L., Pang, Y., Zhang, C., Jiang, T., Chen, X., Luo, J., et al.: Integrated triboelectric nanogenerator array based on air-driven mem-brane structures for water wave energy harvesting. Nano Energy 31, 351–358 (2017)

    Article  Google Scholar 

  11. Lucas, J., Salter, S.H., Cruz, J., Taylor, J.R.M., Bryden, I.: Performance optimisation of a modified Duck through optimal mass distribution. In: Proceedings of the 8th European Wave and Tidal Energy Conference. Uppsala, Sweden, pp. 7–9 (2009)

    Google Scholar 

  12. Liu, J., Fei, P., Zhou, J., Tummala, R., Wang, Z.L.: Toward high output-power nanogenerator. Appl. Phys. Lett. 92, 173105 (2008)

    Article  Google Scholar 

  13. Li, Y., Yu, Y.H.: A synthesis of numerical methods for modeling wave energy converter-point absorbers. Renew. Sustain. Energy Rev. 16(6), 4352–4364 (2012)

    Article  Google Scholar 

  14. Cameron, L., Doherty, R., Henry, A., et al.: Design of the next generation of the Oyster wave energy converter. In: 3rd International Conference on Ocean Energy. ICOE Bilbao, Spain, vol. 6, p. 1e12 (2010)

    Google Scholar 

  15. Budal, K., Falnes, J.: Interacting Point Absorbers with Controlled Motion. Power from Sea Waves, Edinburgh, UK, pp. 381–398 (1980)

    Google Scholar 

  16. Folley, M., Whittaker, T.J.T., Henry, A.: The effect of water depth on the performance of a small surging wave energy converter. Ocean Eng. 34(8–9), 1265–1274 (2007)

    Article  Google Scholar 

  17. LináWang, Z.: Triboelectric nanogenerators as new energy technology and self-powered sensors–principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2014)

    Article  Google Scholar 

  18. Zou, H., et al.: Quantifying the triboelectric series. Nat. Commun. 10, 1427 (2019)

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the support of the National Natural Science Foundation of China (Grant No. 51779104), the Natural Science Foundation of Fujian Province, China (Grant No. 2020J01694) and the Foreign Cooperation Program of Fujian Province, China (Grant No. 2020I0021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohui Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, S. et al. (2023). Triboelectric Nanogenerator Based on Pendulum Plate Wave Energy Converter. In: Wang, Y., Yu, T., Wang, K. (eds) Advanced Manufacturing and Automation XII. IWAMA 2022. Lecture Notes in Electrical Engineering, vol 994. Springer, Singapore. https://doi.org/10.1007/978-981-19-9338-1_50

Download citation

Publish with us

Policies and ethics