Skip to main content
Log in

Design and Assessment of Phase-Shifting Algorithms in Optical Interferometer

  • Review
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Silicon wafers and transparent glass plates are major components in the semiconductor industry. In semiconductor devices, the surface shape and optical thickness of the wafers and glass plates are the key parameters for the optimal performance of the devices. Phase-shifting interferometry has been widely used to achieve precision measurements of these parameters. The phase-shifting algorithm significantly affects the interferometric measurement results with phase-shifting interferometry. In this review, we introduce the design and assessment of phase-shifting algorithms in the Fizeau interferometer. Section 2 categorized the phase-shifting algorithms designed by several methods in terms of their error compensation ability. Then, the optical setup of the Fizeau interferometer used for surface and thickness measurement is explained in Sect. 3. In addition, Sect. 4 explained the principle of phase extraction using phase-shifting interferometry and discussed its error sources. Moreover, design methods for the phase-shifting algorithm to eliminate error sources are introduced in Sect. 5. Finally, the error compensation abilities of designed algorithms are estimated by several methods in Sect. 6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Due to the nature of the research, supporting data is not available.

References

  1. Rabin, O., Herz, P. R., Lin, Y. M., Akinwande, A. I., Cronin, S. B., & Dresselhaus, M. S. (2003). Formation of thick porous anodic alumina films and nanowire arrays on silicon wafers and glass. Advanced Functional Materials, 13(8), 631–638.

    Article  Google Scholar 

  2. Kim, S.-S., & Chung, M.-K. (2021). Rapid 3D shape measurement using sine pattern in phase‑shifting projection method. International Journal of Precision Engineering and Manufacturing, 22(8), 1381–1389.

    Article  Google Scholar 

  3. Lee, H., Kim, H., & Jeong, H. (2022). Approaches to sustainability in chemical mechanical polishing (CMP): a review. International Journal of Precision Engineering and Manufacturing-Green Technology, 9(1), 349–367.

    Article  Google Scholar 

  4. Ren, Z., Fang, F., Yan, N., &Wu, Y. (2022). State of the Art in Defect Detection Based on Machine Vision. International Journal of Precision Engineering and Manufacturing-Green Technology, 9(2), 661–691.

    Article  Google Scholar 

  5. Schmitt, R., & Doerner, D. (2006). Measurement technology for the machine-integrated determination of form deviations in optical surfaces. CIRP Annals - Manufacturing Technology, 55(1), 559–562.

    Article  Google Scholar 

  6. Jin, J., Kim, J. W., Kim, J. A., & Eom, T. B. (2010). Thickness and refractive index measurement of a wafer based on the optical comb. Optics InfoBase Conference Papers, 18(17), 18339–18346.

    Google Scholar 

  7. Zortman, W. A., Trotter, D. C., & Watts, M. R. (2010). Silicon photonics manufacturing. Optics Express, 18(23), 23598–23607.

    Article  Google Scholar 

  8. Fang, F. Z., Zhang, X. D., Weckenmann, A., Zhang, G. X., & Evans, C. (2013). Manufacturing and measurement of freeform optics. CIRP Annals - Manufacturing Technology, 62(2), 823–846.

    Article  Google Scholar 

  9. Kim, J.-A., Kang, C.-S., Eom, T. B., Jin, J., Suh, H. S., & Kim, J. W. (2014). Quadrature laser interferometer for in-line thickness measurement of glass panels using a current modulation technique. Applied Optics, 53(20), 4604–4610.

    Article  Google Scholar 

  10. de Groot, P. (2015). Principles of interference microscopy for themeasurement of surface topography. Advances in Optics and Photonics, 7(1), 1–65.

    Article  MathSciNet  Google Scholar 

  11. Gao, W., Kim, S. W., Bosse, H., Haitjema, H., Chen, Y. L., Lu, X. D., & Kunzmann, H. (2015). Measurement technologies for precision positioning. CIRP Annals - Manufacturing Technology, 64(2), 773–796.

    Article  Google Scholar 

  12. Kim, D., Kim, H., Lee, S., & Jeong, H. (2015). Effect of initial deflection of diamond wire on thickness variation of sapphire wafer in multi-wire saw. International Journal of Precision Engineering and Manufacturing - Green Technology, 2(2), 117–121.

    Article  Google Scholar 

  13. Pal, R. K., Garg, H., Sarepaka, R. G. V., & Karar, V. (2016). Experimental Investigation of Material Removal and Surface Roughness during Optical Glass Polishing. Materials and Manufacturing Processes, 31(12), 1613–1620.

    Article  Google Scholar 

  14. Huang, Y., Ma, J., Zhu, R., Yuan, C., Chen, L., Cai, H., & Sun, W. (2015). Absolute measurement of optical flat surface shape based on the conjugate differential method. Optics Express, 23(23), 29687–29697.

    Article  Google Scholar 

  15. Boeuf, F., Cremer, S., Temporiti, E., Fere, M., Shaw, M., Vulliet, N., Verga, L. (2015). Recent progress in silicon photonics R and D and manufacturing on 300mm wafer platform. Optical Fiber Communication Conference, OFC 2015, 34(2), 286–295.

  16. Lee, T., Jeong, H., Kim, H., Lee, S., & Kim, D. (2016). Effect of platen shape on evolution of total thickness variation in single-sided lapping of sapphire wafer. International Journal of Precision Engineering and Manufacturing - Green Technology, 3(3), 225–229.

    Article  Google Scholar 

  17. Singh, A., Garg, H., Kumar, P., & Lall, A. K. (2017). Analysis and optimization of parameters in optical polishing of large diameter BK7 flat components. Materials and Manufacturing Processes, 32(5), 542–548.

    Article  Google Scholar 

  18. Kim, J. A., Kim, J. W., Kang, C. S., Jin, J., & Lee, J. Y. (2017). An interferometric system for measuring thickness of parallel glass plates without 2π ambiguity using phase analysis of quadrature Haidinger fringes. Review of Scientific Instruments, 88(5), 055108.

    Article  Google Scholar 

  19. Chen, B., Li, S., Deng, Z., Guo, B., & Zhao, Q. (2017). Grinding marks on ultra-precision grinding spherical and aspheric surfaces. International Journal of Precision Engineering and Manufacturing - Green Technology, 4(4), 419–429.

    Article  Google Scholar 

  20. Pal, R. K., Sharma, R., Baghel, P. K., Garg, H., & Karar, V. (2018). An approach for quantification of friction and enhancing the process efficiency during polishing of optical glass. Journal of Mechanical Science and Technology, 32(8), 3835–3842.

    Article  Google Scholar 

  21. Wu, M., Guo, B., Zhao, Q., Zhang, J., Fang, X., & He, P. (2019). High Efficiency Precision Grinding of Micro-structured SiC Surface Using Laser Micro-structured Coarse-Grain Diamond Grinding Wheel. International Journal of Precision Engineering and Manufacturing - Green Technology, 6(3), 577–586.

    Article  Google Scholar 

  22. Vorburger, T. V., Rhee, H. G., Renegar, T. B., Song, J. F., & Zheng, A. (2007). Comparison of optical and stylus methods for measurement of surface texture. International Journal of Advanced Manufacturing Technology, 33(1–2), 110–118.

    Article  Google Scholar 

  23. Shibuya, A., Gao, W., Yoshikawa, Y., Ju, B., & Kiyono, S. (2007). Profile measurements of micro-aspheric surfaces using an air-bearing stylus with a microprobe. International Journal of precision engineering and manufacturing, 8(2), 26–31.

    Google Scholar 

  24. Park, J. H., Jo, Y. K., Kim, J., & Lee, D. Y. (2012). A compact and fast nano-stylus profiling head for optical instruments. Journal of Mechanical Science and Technology, 26(7), 2077–2080.

    Article  Google Scholar 

  25. Li, C., Yang, S., Wang, Y., Wang, C., Ren, W., & Jiang, Z. (2016). Measurement and characterization of a nano-scale multiple-step height sample using a stylus profiler. Applied Surface Science, 387, 732–735.

    Article  Google Scholar 

  26. Tian, J., Tian, Y., Guo, Z., Wang, F., Zhang, D., Liu, X., & Shirinzadeh, B. (2016). Development of a novel 3-DOF suspension mechanism for multi-function stylus profiling systems. International Journal of Precision Engineering and Manufacturing, 17(11), 1415–1423.

    Article  Google Scholar 

  27. Tian, J., Tian, Y., Guo, Z., Wang, F., Zhang, D., & Liu, X. (2018). Structure design and experimental investigation of a multi-function stylus profiling system for characterization of engineering surfaces at micro/nano scales. Microsystem Technologies, 24(5), 2177–2187.

    Article  Google Scholar 

  28. Farkas, G., & Drégelyi-Kiss, K. (2018). Measurement uncertainty of surface roughness measurement. In IOP Conference Series: Materials Science and Engineering, 448, 012020.

    Article  Google Scholar 

  29. Pawlus, P., Reizer, R., & Wieczorowski, M. (2018). Comparison of Results of Surface Texture Measurement. Metrology and measurement systems, 25(3), 589–602.

    Google Scholar 

  30. Yin, Q., Xu, B., Yin, G., Gui, P., Xu, W., & Tang, B. (2018). Surface profile measurement and error compensation of triangular microstructures employing a stylus scanning system. Journal of Nanomaterials, 2018, 22–24.

    Article  Google Scholar 

  31. Wang, Y., Li, Z., Fu, Z., Fang, F., & Zhang, X. (2019). Radial scan form measurement for freeform surfaces with a large curvature using stylus profilometry. Measurement Science and Technology, 30(4), 045010.

    Article  Google Scholar 

  32. Maruyama, H., Mitsuyama, T., Ohmi, M., & Haruna, M. (2000). Simultaneous measurement of refractive index and thickness by low coherence interferometry considering chromatic dispersion of index. Optical Review, 7(5), 468–472.

    Article  Google Scholar 

  33. Murphy, D. F., & Flavin, D. A. (2000). Dispersion-insensitive measurement of thickness and group refractive index by low-coherence interferometry. Applied Optics, 39(25), 4607–4615.

    Article  Google Scholar 

  34. Maruyama, H., Inoue, S., Mitsuyama, T., Ohmi, M., & Haruna, M. (2002). Low-coherence interferometer system for the simultaneous measurement of refractive index and thickness. Applied Optics, 41(7), 1315–1322.

    Article  Google Scholar 

  35. Ohmi, M., Nishi, H., Konishi, Y., Yamada, Y., & Haruna, M. (2004). High-speed simultaneous measurement of refractive index and thickness of transparent plates by low-coherence interferometry and confocal optics. Measurement Science and Technology, 15(8), 1531–1535.

    Article  Google Scholar 

  36. Kutavichus, V. P., Filippov, V. V., & Huzouski, V. H. (2006). Determination of optical parameters and thickness of weakly absorbing thin films from reflectance and transmittance spectra. Applied Optics, 45(19), 4547–4553.

    Article  Google Scholar 

  37. Groch, D., & Poniatowska, M. (2020). Simulation tests of the accuracy of fitting two freeform surfaces. International Journal of Precision Engineering and Manufacturing, 21(1), 23–30.

    Article  Google Scholar 

  38. Cao, M., Zheng, P., Liu, D., Chang, J., & Zhang, L. (2021). In-process measurement and geometric error fusion control of discontinuous surface based on Bayesian theory. International Journal of Precision Engineering and Manufacturing, 22(4), 539–556.

    Article  Google Scholar 

  39. Onodera, R., Wakaumi, H., & Ishii, Y. (2005). Measurement technique for surface profiling in low-coherence interferometry. Optics Communications, 254(1–3), 52–57.

    Article  Google Scholar 

  40. Sun, C., Yu, L., Sun, Y., & Yu, Q. (2005). Scanning white-light interferometer for measurement of the thickness of a transparent oil film on water. Applied Optics, 44(25), 5202–5205.

    Article  Google Scholar 

  41. Ghim, Y.-S., & Kim, S.-W. (2006). Thin-film thickness profile and its refractive index measurements by dispersive white-light interferometry. Optics Express, 14(24), 11885–11891.

    Article  Google Scholar 

  42. Kim, S., Na, J., Kim, M. J., & Lee, B. H. (2008). Simultaneous measurement of refractive index and thickness by combining low-coherence interferometry and confocal optics. Optics Express, 16(8), 5516–5526.

    Article  Google Scholar 

  43. Verrier, I., Veillas, C., & Lépine, T. (2009). Low coherence interferometry for central thickness measurement of rigid and soft contact lenses. Optics Express, 17(11), 9157–9170.

    Article  Google Scholar 

  44. Borgetto, N., André, F., Galizzi, C., & Escudié, D. (2013). Simultaneous film thickness measurement and wall temperature assessment by Low-Coherence Interferometry. Experimental Thermal and Fluid Science, 44, 512–519.

    Article  Google Scholar 

  45. Tang, D., Gao, F., & Jiang, X. (2014). On-line surface inspection using cylindrical lens-based spectral domain low-coherence interferometry. Applied Optics, 53(24), 5510–5516.

    Article  Google Scholar 

  46. Zhao, Y., Schmidt, G., Moore, D. T., & Ellis, J. D. (2015). Absolute thickness metrology with submicrometer accuracy using a low-coherence distance measuring interferometer. Applied Optics, 54(25), 7693–7700.

    Article  Google Scholar 

  47. Park, H. M., & Joo, K.-N. (2017). High-speed combined NIR low-coherence interferometry for wafer metrology. Applied Optics, 56(31), 8592–8597.

    Article  Google Scholar 

  48. Winarno, A., Takahashi, S., Matsumoto, H., & Takamasu, K. (2019). A new measurement method to simultaneously determine group refractive index and thickness of a sample using low-coherence tandem interferometry. Precision Engineering, 55(2018), 254–259.

    Article  Google Scholar 

  49. Chen, X., Gramaglia, M., & Yeazell, J. A. (2000). Phase-shifting interferometry with uncalibrated phase shifts. Applied Optics, 39(4), 585–591.

    Article  Google Scholar 

  50. Cai, L. Z., Liu, Q., & Yang, X. L. (2004). Generalized phase-shifting interferometry with arbitrary unknown phase steps for diffraction objects. Optics Letters, 29(2), 183–185.

    Article  Google Scholar 

  51. Bitou, Y., Inaba, H., Hong, F. L., Takatsuji, T., & Onae, A. (2005). Phase-shifting interferometry with equal phase steps by use of a frequency-tunable diode laser and a Fabry-Perot cavity. Applied Optics, 44(26), 5403–5407.

    Article  Google Scholar 

  52. Yamaguchi, I., Ida, T., Yokota, M., & Yamashita, K. (2006). Surface shape measurement by phase-shifting digital holography with a wavelength shift. Applied Optics, 45(29), 7610–7616.

    Article  Google Scholar 

  53. Xu, X. F., Cai, L. Z., Wang, Y. R., Yang, X. L., Meng, X. F., Dong, G. Y., & Zhang, H. (2007). Generalized phase-shifting interferometry with arbitrary unknown phase shifts: Direct wave-front reconstruction by blind phase shift extraction and its experimental verification. Applied Physics Letters, 90(12), 121124.

    Article  Google Scholar 

  54. Xu, J., Jin, W., Chai, L., & Xu, Q. (2011). Phase extraction from randomly phase-shifted interferograms by combining principal component analysis and least squares method. Optics Express, 19(21), 20483–20492.

    Article  Google Scholar 

  55. Villalobos-Mendoza, B., Granados-Agustín, F. S., Aguirre-Aguirre, D., & Cornejo-Rodríguez, A. (2015). Phase shifting interferometry using a spatial light modulator to measure optical thin films. Applied Optics, 54(26), 7997–8003.

    Article  Google Scholar 

  56. Xu, X., Wang, Y., Ji, Y., Xu, Y., Xie, M., & Han, H. (2018). A novel dual-wavelength iterative method for generalized dual-wavelength phase-shifting interferometry with second-order harmonics. Optics and Lasers in Engineering, 106(January), 39–46.

    Article  Google Scholar 

  57. Deck, L. L. (2003). Fourier-transform phase-shifting interferometry. Applied Optics, 42(13), 2354–2365.

    Article  Google Scholar 

  58. Patil, A., Raphael, B., & Rastogi, P. (2004). Generalized phase-shifting interferometry by use of a direct stochastic algorithm for global search. Optics Letters, 29(12), 1381–1383.

    Article  Google Scholar 

  59. Thakur, M., Tay, C. J., & Quan, C. (2005). Surface profiling of a transparent object by use of phase-shifting Talbot interferometry. Applied Optics, 44(13), 2541–2545.

    Article  Google Scholar 

  60. Patil, A., & Rastogi, P. (2005). Approaches in generalized phase shifting interferometry. Optics and Lasers in Engineering, 43(3–5), 475–490.

    Article  MATH  Google Scholar 

  61. Meng, X. F., Cai, L. Z., Xu, X. F., Yang, X. L., Shen, X. X., Dong, G. Y., & Wang, Y. R. (2006). Two-step phase-shifting interferometry and its application in image encryption. Optics Letters, 31(10), 1414–1416.

    Article  Google Scholar 

  62. Kumar, Y. P., & Chatterjee, S. (2010). Thickness measurement of transparent glass plates using a lateral shearing cyclic path optical configuration setup and polarization phase shifting interferometry. Applied Optics, 49(33), 6552–6557.

    Article  Google Scholar 

  63. Vargas, J., Quiroga, J. A., & Belenguer, T. (2011). Phase-shifting interferometry based on principal component analysis. Optics Letters, 36(8), 1326–1328.

    Article  Google Scholar 

  64. Li, J., Wang, Y., Meng, X., Yang, X., & Wang, Q. (2013). An evaluation method for phase shift extraction algorithms in generalized phase-shifting interferometry. Journal of Optics, 15(10), 105408.

    Article  Google Scholar 

  65. Deck, L. L. (2014). Model-based phase shifting interferometry. Applied Optics, 53(21), 4628–4636.

    Article  Google Scholar 

  66. Shoji, E., Komiya, A., Okajima, J., Kubo, M., & Tsukada, T. (2019). Three-step phase-shifting imaging ellipsometry to measure nanofilm thickness profiles. Optics and Lasers in Engineering, 112(2018), 145–150.

    Article  Google Scholar 

  67. Phillion, D. W. (1997). General methods for generating phase-shifting interferometry algorithms. Applied Optics, 36(31), 8098–8115.

    Article  Google Scholar 

  68. Wang, Z., & Han, B. (2004). Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms. Optics Letters, 29(14), 1671–1673.

    Article  Google Scholar 

  69. Guo, H. (2011). Blind self-calibrating algorithm for phase-shifting interferometry by use of cross-bispectrum. Optics Express, 19(8), 7807–7815.

    Article  Google Scholar 

  70. Shi, Z., Zhang, J., Sui, Y., Peng, J., Yan, F., & Yang, H. (2011). Design of algorithms for phase shifting interferometry using self-convolution of the rectangle window. Optics Express, 19(15), 14671–14681.

    Article  Google Scholar 

  71. Juarez-Salazar, R., Robledo-Sánchez, C., Meneses-Fabian, C., Guerrero-Sánchez, F., & Arévalo Aguilar, L. M. (2013). Generalized phase-shifting interferometry by parameter estimation with the least squares method. Optics and Lasers in Engineering, 51(5), 626–632.

    Article  Google Scholar 

  72. Fang, C., Xiang, Y., Qi, K., Zhang, C., & Yu, C. (2013). An 11-frame phase shifting algorithm in lateral shearing interferometry. Optics Express, 21(23), 28325–28333.

    Article  Google Scholar 

  73. Flores Muñoz, V. H., Arellano, N.-I.T., Serrano García, D. I., Martínez García, A., Rodríguez Zurita, G., & García Lechuga, L. (2016). Measurement of mean thickness of transparent samples using simultaneous phase shifting interferometry with four interferograms. Applied Optics, 55(15), 4047–4051.

    Article  Google Scholar 

  74. Sun, T., Zheng, W., Yu, Y., Yan, K., Asundi, A., & Valukh, S. (2019). Algorithm for surfaces profiles and thickness variation measurement of a transparent plate using a Fizeau interferometer with wavelength tuning. Applied Sciences, 9(11), 2349.

    Article  Google Scholar 

  75. Yu, J., Zhou, F., Wang, H., Xie, Y., Zhang, H., Wang, L., Jin, P., & Shui, C. (2019). Method for designing error-resistant phase-shifting algorithm. Optics Communications, 433, 52–59.

    Article  Google Scholar 

  76. Chen, Y., Wang, T., & Kemao, Q. (2021). Parallel advanced iterative algorithm for phase extraction with unknown phase-shifts. Optics and Lasers in Engineering, 138, 106408.

    Article  Google Scholar 

  77. Bruning, J. H., Herriott, D. R., Gallagher, J. E., Rosenfeld, D. P., White, A. D., & Brangaccio, D. J. (1974). Digital wavefront measuring interferometer for testing optical surfaces and lenses. Applied optics, 13(11), 2693–2703.

    Article  Google Scholar 

  78. Wyant, J. C. (1975). Use of an ac heterodyne lateral shear interferometer with real–time wavefront correction systems. Applied Optics, 14(11), 2622–2626.

    Article  Google Scholar 

  79. Wyant, J. C., Koliopoulos, C. L., Bhushan, B., & George, O. E. (1984). An optical profilometer for surface characterization of magnetic media. ASLE transactions, 27(2), 101–113.

    Article  Google Scholar 

  80. Schwider, J., Burow, R., Elssner, K.-E., Grzanna, J., Spolaczyk, R., & Merkel, K. (1983). Digital wave-front measuring interferometry: Some systematic error sources. Applied Optics, 22(21), 3421–3432.

    Article  Google Scholar 

  81. Hariharan, P., Oreb, B. F., & T. E. (1987). Digital phase-shifting interferometry: A simple error-compensating phase calculation algorithm. Applied Optics, 26(13), 2504–2506.

    Article  Google Scholar 

  82. Larkin, K. G., & Oreb, B. F. (1992). Design and assessment of symmetrical phase-shifting algorithms. Journal of the Optical Society of America A, 9(10), 1740–1748.

    Article  Google Scholar 

  83. Zhu, Y., Sugisaki, K., Ouchi, C., Hasegawa, M., Niibe, M., Suzuki, A., & Murakami, K. (2004). Lateral shearing interferometer for EUVL: theoretical analysis and experiment. In In Emerging Lithographic Technologies VIII. SPIE (pp. 824–832).

  84. Schmit, J., & Creath, K. (1995). Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry. Applied Optics, 34(19), 3610–3619.

    Article  Google Scholar 

  85. de Groot, P. (1995). Derivation of algorithms for phase-shifting interferometry using the concept of a data-sampling window. Applied Optics, 34(22), 4723–4730.

    Article  Google Scholar 

  86. Hibino, K., Larkin, K. G., Oreb, B. F., & Farrant, D. I. (1995). Phase shifting for nonsinusoidal waveforms with phase-shift errors. Journal of the Optical Society of America A, 12(4), 761–768.

    Article  Google Scholar 

  87. Surrel, Y. (1996). Design of algorithms for phase measurements by the use of phase stepping. Applied Optics, 35(1), 51–60.

    Article  Google Scholar 

  88. Hibino, K., Oreb, B. F., & Fairman, P. S. (2003). Wavelength-scanning interferometry of a transparent parallel plate with refractive-index dispersion. Applied Optics, 42(19), 3888–3895.

    Article  Google Scholar 

  89. Hibino, K., Oreb, B. F., Fairman, P. S., & Burke, J. (2004). Simultaneous measurement of surface shape and variations in optical thickness of a transparent parallel plate in wavelength-scanning Fizeau interferometer. Applied Optics, 43(6), 1241–1249.

    Article  Google Scholar 

  90. Hanayama, R., Hibino, K., Warisawa, S., & Mitsuishi, M. (2004). Phase measurement algorithm in wavelength scanned fizeau interferometer. Optical Review, 11(5), 337–343.

    Article  Google Scholar 

  91. Estrada, J. C., Servin, M., & J. A. Q. (2009). Easy and straightforward construction of wideband phase-shifting algorithms for interferometry. Optics Letters, 34(4), 413–415.

    Article  Google Scholar 

  92. Jeon, J., Kim, S., & Kim, Y. (2021). Precise interferometric surface profiling of silicon wafer using sampling window and wavelength tuning. Journal of Mechanical Science and Technology, 35(5), 2177–2184.

    Article  Google Scholar 

  93. Hibino, K., Oreb, B. F., Farrant, D. I., & Larkin, K. G. (1997). Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts. Journal of the Optical Society of America A, 14(4), 918–930.

    Article  Google Scholar 

  94. Zhang, H., Lalor, M. J., & Burton, D. R. (1999). Robust, accurate seven-sample phase-shifting algorithm insensitive to nonlinear phase-shift error and second-harmonic distortion: A comparative study. Optical Engineering, 38(9), 1524–1533.

    Article  Google Scholar 

  95. Zhang, H., Lalor, M. J., & Burton, D. R. (1999). Error-compensating algorithms in phase-shifting interferometry: A comparison by error analysis. Optics and Lasers in Engineering, 31(5), 381–400.

    Article  Google Scholar 

  96. de Groot, P. (2000). Measurement of transparent plates with wavelength-tuned phase-shifting interferometry. Applied Optics, 39(16), 2658–2663.

    Article  Google Scholar 

  97. Wu, F., Zhang, H., Lalor, M. J., & Burton, D. R. (2001). A novel design for fiber optic interferometric fringe projection phase-shifting 3-D profilometry. Optics Communications, 187(4–6), 347–357.

    Article  Google Scholar 

  98. Kim, Y., Hibino, K., Sugita, N., & Mitsuishi, M. (2014). Design of phase shifting algorithms: Fringe contrast maximum. Optics Express, 22(15), 18203–18213.

    Article  Google Scholar 

  99. Kumagai, T., Hibino, K., & Nagaike, Y. (2017). Dual-phase-shift spherical Fizeau interferometer for reduction of noise due to internally scattered light. Optical Engineering, 56(3), 034102.

    Article  Google Scholar 

  100. Choque, I., Servin, M., Padilla, M., Asmad, M., & Ordones, S. (2019). Phase measurement of nonuniform phase-shifted interferograms using the frequency transfer function. Applied Optics, 58(15), 4157–4162.

    Article  Google Scholar 

  101. Padilla, M., Servin, M., Garnica, G., & Paez, G. (2019). Design of robust phase-shifting algorithms using N-step formulas as building blocks. Optics and Lasers in Engineering, 121(May), 346–351.

    Article  Google Scholar 

  102. Kim, Y., Hibino, K., & Mitsuishi, M. (2018). Interferometric profile measurement of optical-thickness by wavelength tuning with suppression of spatially uniform error. Optics Express, 26(8), 10870–10878.

    Article  Google Scholar 

  103. Choque, I., Padilla, M., Servin, M., Asmad, M., & Ordones, S. (2020). Suppressing ripple distortions and spurious pistons in phase-shifting interferometry. Journal of the Optical Society of America A, 37(4), 614–620.

    Article  Google Scholar 

  104. Kim, Y., Moon, Y., Hibino, K., & Mitsuishi, M. (2020). Thickness profiling of transparent plate using wavelength-tuned phase-shifting analysis. Measurement, 161, 107870.

    Article  Google Scholar 

  105. Bae, W., Kim, Y., Moon, Y. H., Hibino, K., Sugita, N., & Mitsuishi, M. (2021). Simultaneous thickness variation and surface profiling of glass plates using Fizeau interferometer with elimination of offset phase error. Optics Communications, 480, 126500.

    Article  Google Scholar 

  106. Kim, S., Kim, Y., Shin, S. C., Hibino, K., & Sugita, N. (2021). Interferometric thickness measurement of glass plate by phase-shifting analysis using wavelength scanning with elimination of bias phase error. Optical Review, 28(1), 48–57.

    Article  Google Scholar 

  107. Kim, Y., Bae, W., Moon, Y. H., Hibino, K., & Mitsuishi, M. (2021). Fourier interferometry of multi-layer sample using wavelength tuning and partially negative window. Optics and Lasers in Engineering, 137, 106350.

    Article  Google Scholar 

  108. Creath, K., WOLF, E. (1988) Progress in optics XXVl phase-measurement interferometry techniques.

  109. Qian, K., Shu, F., & Wu, X. (2000). Determination of the best phase step of the Carre algorithm in phase shifting interferometry. Measurement Science and Technology, 11(8), 1220–1223.

    Article  Google Scholar 

  110. Novák, J., Novák, P., & Mikš, A. (2008). Multi-step phase-shifting algorithms insensitive to linear phase shift errors. Optics Communications, 281(21), 5302–5309.

    Article  Google Scholar 

  111. Pan, B., Kemao, Q., Huang, L., & Asundi, A. (2009). Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry. Optics Letters, 34(4), 416–418.

    Article  Google Scholar 

  112. Chen, W., Quan, C., Tay, C. J., & Fu, Y. (2009). Quantitative detection and compensation of phase-shifting error in two-step phase-shifting digital holography. Optics Communications, 282(14), 2800–2805.

    Article  Google Scholar 

  113. de Groot, P. (2009). Design of error-compensating algorithms for sinusoidal phase shifting interferometry. Applied Optics, 48(35), 6788–6796.

    Article  Google Scholar 

  114. Liu, F., Wu, Y., & Wu, F. (2015). Correction of phase extraction error in phase-shifting interferometry based on Lissajous figure and ellipse fitting technology. Optics Express, 23(8), 10794–10807.

    Article  Google Scholar 

  115. Kim, Y., Hibino, K., Sugita, N., & Mitsuishi, M. (2015). Surface profile measurement of a highly reflective silicon wafer by phase-shifting interferometry. Applied Optics, 54(13), 4207–4213.

    Article  Google Scholar 

  116. Zhai, Z., Li, Z., Zhang, Y., Dong, Z., Wang, X., & Lv, Q. (2018). An accurate phase shift extraction algorithm for phase shifting interferometry. Optics Communications, 429(March), 144–151.

    Article  Google Scholar 

  117. Deck, L. L. (2009). Suppressing phase errors from vibration in phase-shifting interferometry. Applied Optics, 48(20), 3948–3960.

    Article  Google Scholar 

  118. Park, J., & Kim, S.-W. (2010). Vibration-desensitized interferometer by continuous phase shifting with high-speed fringe capturing. Optics Letters, 35(1), 19–21.

    Article  Google Scholar 

  119. Liu, Q., Wang, Y., He, J., & Ji, F. (2015). Modified three-step iterative algorithm for phase-shifting interferometry in the presence of vibration. Applied Optics, 54(18), 5833–5841.

    Article  Google Scholar 

  120. Hao, Q., Zhu, Q., & Hu, Y. (2009). Random phase-shifting interferometry without accurately controlling or calibrating the phase shifts. Optics Letters, 34(8), 1288–1290.

    Article  Google Scholar 

  121. Ri, S., Takimoto, T., Xia, P., Wang, Q., Tsuda, H., & Ogihara, S. (2020). Accurate phase analysis of interferometric fringes by the spatiotemporal phase-shifting method. Journal of Optics, 22(10), 105703.

    Article  Google Scholar 

  122. Langoju, R., Patil, A., & Rastogi, P. (2007). Statistical study of generalized nonlinear phase step estimation methods in phase-shifting interferometry. Applied Optics, 46(33), 8007–8014.

    Article  Google Scholar 

  123. Langoju, R., Patil, A., & Rastogi, P. (2007). A novel approach for characterizing the nonlinear phase steps of the PZT in interferometry. Optics and Lasers in Engineering, 45(2), 258–264.

    Article  Google Scholar 

  124. Langoju, R., Patil, A., & Rastogi, P. (2006). Phase-shifting interferometry in the presence of nonlinear phase steps, harmonics, and noise. Optics Letters, 31(8), 1058–1060.

    Article  Google Scholar 

  125. Kim, Y., Hibino, K., Sugita, N., & Mitsuishi, M. (2015). Absolute optical thickness measurement of transparent plate using excess fraction method and wavelength-tuning Fizeau interferometer. Optics Express, 23(4), 4065–4073.

    Article  Google Scholar 

  126. de Groot, P. J. (2014). Correlated errors in phase-shifting laser Fizeau interferometry. Applied Optics, 53(19), 4334–4342.

    Article  Google Scholar 

  127. Schwider, J. (1993). New compensating four-phase algorithm for phase-shift interferometry. Optical Engineering, 32(8), 1883–1885.

    Article  Google Scholar 

  128. Zhu, R., Chen, J., Wang, Q., Chen, L., & Zhang, Y. (1993). New algorithm on phase-shifting interferometry: The overlapping averaging 4-frame algorithm. In In: Interferometry VI: Techniques and Analysis. SPIE (pp. 355–366).

  129. Freischlad, K., & Koliopoulos, C. L. (1990). Fourier description of digital phase-measuring interferometry. Journal of the Optical Society of America A, 7(4), 542–551.

    Article  Google Scholar 

  130. Servin, M., Estrada, J. C., & Quiroga, J. A. (2009). Spectral analysis of phase shifting algorithms. Optics Express, 17(19), 16423–16428.

    Article  Google Scholar 

  131. Servin, M., Estrada, J. C., & Quiroga, J. A. (2009). The general theory of phase shifting algorithms. Optics Express, 17(24), 21867–21881.

    Article  Google Scholar 

  132. Hibino, K. (1997). Susceptibility of systematic error-compensating algorithms to random noise in phase-shifting interferometry. Applied Optics, 36(10), 2084–2093.

    Article  Google Scholar 

  133. Hibino, K. (1999). Error-compensating phase measuring algorithms in a fizeau interferometer. Optical Review, 6(6), 529–538.

    Article  Google Scholar 

  134. Hibino, K., & Takatsuji, T. (2002). Suppression of multiple-beam interference noise in testing an optical-parallel plate by wavelength-scanning interferometry. Optical Review, 9(2), 60–65.

    Article  Google Scholar 

  135. Hibino, K., & Yamauchi, M. (2000). Phase-measuring algorithms to suppress spatially nonuniform phase modulation in a two-beam interferometer. Optical Review, 7(6), 543–549.

    Article  Google Scholar 

  136. Bae, W., & Kim, Y. (2021). Phase extraction formula for glass thickness measurement using Fizeau interferometer. Journal of Mechanical Science and Technology, 35(4), 1623–1632.

    Article  Google Scholar 

  137. Harris, F. J. (1978). On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform. Proceedings of the IEEE, 66(1), 51–83.

    Article  Google Scholar 

  138. Surrel, Y. (1993). Phase stepping: A new self-calibrating algorithm. Applied Optics, 32(19), 3598–3600.

    Article  Google Scholar 

  139. Kim, Y., Hibino, K., Hanayama, R., Sugita, N., & Mitsuishi, M. (2014). Multiple-surface interferometry of highly reflective wafer by wavelength tuning. Optics Express, 22(18), 21145–21156.

    Article  Google Scholar 

  140. Kim, Y., Sugita, N., & Mitsuishi, M. (2016). Measurement of highly reflective surface shape using wavelength tuning Fizeau interferometer and polynomial window function. Precision Engineering, 45, 187–194.

    Article  Google Scholar 

  141. Kim, Y., Hibino, K., Sugita, N., & Mitsuishi, M. (2015). Simultaneous measurement of surface shape and optical thickness using wavelength tuning and a polynomial window function. Optics Express, 23(25), 32869–32880.

    Article  Google Scholar 

  142. Kim, Y., Hibino, K., Sugita, N., & Mitsuishi, M. (2016). Interferometric measurement of surface shape by wavelength tuning suppressing random intensity error. Applied Optics, 55(23), 6464–6470.

    Article  Google Scholar 

  143. Kim, Y., Hibino, K., Sugita, N., & Mitsuishi, M. (2015). Measurement of optical thickness variation of BK7 plate by wavelength tuning interferometry. Optics Express, 23(17), 22928–22938.

    Article  Google Scholar 

  144. Kim, Y., & Hibino, K. (2017). Statistical and interferometric determination of the optical thickness of a multilayer transparent plate. Optical Review, 24(6), 734–740.

    Article  Google Scholar 

  145. Kim, Y., Sugita, N., & Mitsuishi, M. (2017). Phase-measuring algorithm to suppress inner reflection of transparent parallel plate in wavelength tuning Fizeau interferometer. Precision Engineering, 48, 67–74.

    Article  Google Scholar 

  146. Kim, Y., Seo, J., Bae, W., Moon, Y. H., Ito, Y., & Sugita, N. (2021). Wavelength-modulation Fourier interferometry with elimination of DC phase error. Precision Engineering, 68, 97–105.

    Article  Google Scholar 

  147. Seo, J., Kim, Y., Bae, W., Moon, Y. H., & Sugita, N. (2021). Wavelength-tuning multiple-surface interferometric analysis with compression of Zernike piston phase error. Measurement, 185, 110078.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2021R1A2C1012658).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangjin Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests of personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is an invited paper (Invited Review).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Jeon, J., Kim, Y. et al. Design and Assessment of Phase-Shifting Algorithms in Optical Interferometer. Int. J. of Precis. Eng. and Manuf.-Green Tech. 10, 611–634 (2023). https://doi.org/10.1007/s40684-022-00495-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-022-00495-z

Keywords

Navigation