Skip to main content

Advertisement

Log in

System Modelling for Collecting Life Cycle Inventory (LCI) Data in MSMEs Using a Conceptual Model for Smart Manufacturing Systems (SMSs)

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Environmental concerns, economic benefits, and government legislations are forcing industries to improve their environmental performance. Life Cycle Assessment (LCA) is a tool to assess environmental impacts associated with a product, process, or service and is widely accepted in industry and academia. However, challenges to adopting LCA in the industry include complexity, expertise, efforts, and costs involved in Life cycle inventory (LCI) data collection. Micro, Small, and Medium-sized Enterprises (MSMEs) find this even more challenging. In this study, we expanded and used a conceptual model for Smart Manufacturing Systems (SMS model) to address the challenges of data collection in a shoe-making factory. The model maps each element of the factory in detail, while LCA provides the guidelines about which pieces of data help perform LCA. The data collected was used to model the foreground system, while data from the ecoinvent 3.7 database was used to model the background systems. Then, LCA was performed on a packaged pair of shoes (functional unit) using the open LCA software for two scenarios: (1) foreground system modelling without SMS model; (2) foreground system modelling with SMS model. The results using the ReCiPe 2016 midpoint impact assessment method and uncertainty analysis using Monte Carlo simulations showed significant differences in environmental impacts in most categories that pointed to the usefulness of using the proposed modelling approach for LCI data collection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. OECD. (2017). World Bank national accounts data, and OECD National Accounts data files. [Online]. Available: https://data.worldbank.org/indicator/NV.IND.MANF.ZS. Accessed 11 Nov 2018

  2. ILOILOSTAT. (2019). International Labour Organization. https://data.worldbank.org/indicator/SL.IND.EMPL.ZS?locations=IN. Accessed 15 Sep 2019

  3. Dicken, P. (2007). Global shift: mapping the changing contours of the world economy. SAGE Publications Ltd.

    Google Scholar 

  4. Haapala, K. R., Camelio, J., Sutherland, J. W., Skerlos, S. J., & Dornfeld, D. A. (2013). A review of engineering research in sustainable manufacturing. Journal of Manufacturing Science and Engineering, 135, 1–16. https://doi.org/10.1115/1.4024040

    Article  Google Scholar 

  5. IPCC. (2015). Climate change 2014: Mitigation of climate change https://doi.org/10.1017/cbo9781107415416

  6. Westkämper, E., Alting, L., & Arndt, G. (2001). Life cycle management and assessment: approaches and visions towards sustainable manufacturing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 215(5), 599–626. https://doi.org/10.1243/0954405011518557

    Article  Google Scholar 

  7. Duflou, J. R., Kellens, K., & Dewulf, W. (2011). Unit process impact assessment for discrete part manufacturing: a state of the art. CIRP Journal of Manufacturing Science and Technology, 4(2), 129–135. https://doi.org/10.1016/J.CIRPJ.2011.01.008

    Article  Google Scholar 

  8. Yuan, C., Zhai, Q., & Dornfeld, D. (2012). CIRP annals-manufacturing technology a three dimensional system approach for environmentally sustainable manufacturing. CIRP Annals-Manufacturing Technology, 61(1), 39–42. https://doi.org/10.1016/j.cirp.2012.03.105

    Article  Google Scholar 

  9. Allwood, J. M., Ashby, M. F., Gutowski, T. G., & Worrell, E. (2011). Resources, conservation and recycling material efficiency : A white paper. Resources, Conservation And Recycling, 55(3), 362–381. https://doi.org/10.1016/j.resconrec.2010.11.002

    Article  Google Scholar 

  10. USDOC. (2011). How does Commerce define sustainable Manufacturing?. International Trade Administration, U.S. Department of Commerce.

  11. Ehrlich, P. R., & Holdren, J. P. (1972). Critique. Bulletin of the Atomic Scientists, 28(5), 16–27. https://doi.org/10.1080/00963402.1972.11457930

    Article  Google Scholar 

  12. Singh, R. K., Murty, H. R., Gupta, S. K., & Dikshit, A. K. (2009). An overview of sustainability assessment methodologies. Ecological Indicators, 9(2), 189–212. https://doi.org/10.1016/j.ecolind.2008.05.011

    Article  Google Scholar 

  13. ISO 14040:2006(en). (2006). Environmental management—life cycle assessment—principles and framework.

  14. ISO 14044: (2006). Environmental management —life cycle assessment—requirements and guidelines.

  15. Zamagni, A., & Buttol, P. (2008). P. P.L., B. R., and M. P., “Critical review of the current research needs and limitations related to ISO-LCA practice,” Deliverable D7 of work package 5 of the CALCAS project, no. 037075, p. 106.

  16. Baumann, H. (2000). Introduction and organisation of LCA activities in industry. International Journal Of Life Cycle Assessment, 5(6), 363–368. doi: https://doi.org/10.1007/bf02978673.

    Article  Google Scholar 

  17. Frankl, F., & Paolo, R. (2000). Life Cycle Assessment in Industry and Business. Adoption patterns, applications and implications. Springer.

    Google Scholar 

  18. Rebitzer, G., et al. (2004). Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment International, 30(5), 701–720. https://doi.org/10.1016/J.ENVINT.2003.11.005

    Article  Google Scholar 

  19. Hauschild, M., Rosenbaum, R. K., & Olsen, S. (eds.). (2018). Life Cycle Assessment. Theory and practice (1st edn). Springer International Publishing.

  20. Curran, M. A., & Cincinnati. (2006). Life-cycle assessment: Principles and practice. National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency.

    Google Scholar 

  21. Cooper, J. S., & Fava, J. A. (2006). Life-Cycle Assessment Practitioner Survey: Summary of resulta. 10(4):12–14.

  22. Steubing, B., Wernet, G., Reinhard, J., Bauer, C., & Moreno-ruiz, E. (2016). The ecoinvent database version 3 (part II): Analyzing LCA results and comparison to version 2. International Journal Of Life Cycle Assessment, 3, 1269–1281. https://doi.org/10.1007/s11367-016-1109-6

    Article  Google Scholar 

  23. Kupfer, T., Baitz, M., Colodel, C.M., Kokborg, M., Schöll, S., Rudolf, M., Thellier, L., Gonzalez, M., Schuller, O. and Hengstler, J. (2017). GaBi database and modelling principles 2017.

  24. Stadler, K., et al. (2018). EXIOBASE 3: Developing a time series of detailed environmentally extended multi-regional input-output tables. Journal of Industrial Ecology, 22(3), 502–515. https://doi.org/10.1111/jiec.12715

    Article  Google Scholar 

  25. Recchioni, M., Mathieux, F., Goralczyk, M., & Schau, E. M. (2013). “ILCD data network and ELCD database - Current use and further needs for supporting environmental footprint and life cycle indicator projects,” doi: https://doi.org/10.2788/78678

  26. NREL U.S. (2012). Life Cycle Inventory Database. National Renewable Energy Laboratory. https://www.lcacommons.gov/nrel/search. Accessed 9 Oct 2020

  27. Heijungs, R., Hellweg, S., Koehler, A., Pennington, D., & Suh, S. (2009). Recent developments in life cycle assessment. Journal Of Environmental Management, 91(1), 1–21. https://doi.org/10.1016/j.jenvman.2009.06.018

    Article  Google Scholar 

  28. Schaltegger, M. P. (2016). Two decades of sustainability management tools for SMEs: How far have we come? Journal of Small Business Management, 54, 481–505. https://doi.org/10.1111/jsbm.12154

    Article  Google Scholar 

  29. EC-JRC, European Commission - Joint Research Centre - Institute for Environment and Sustainability: International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance. EUR 24708 EN, 1st ed.Publications Office of the European Union.

  30. UNEP/SETAC (2004). Why take a life cycle approach? Paris, 24 pp.” https://www.lifecycleinitiative.org/. Accessed 17 Nov 2019

  31. EPLCA, & “EPLCA European Platform on Life Cycle Assessment, ”European Commission. http://eplca.jrc.ec.europa.eu. Accessed 17 Nov 2019

  32. Hischier, R., et al. (2010). “Implementation of Life Cycle Impact Assessment Methods,” no. 3.

  33. Ciroth, A., Foster, C., Hildenbrand, J., & Zamagni, A. (2020). Life cycle inventory dataset review criteria—a new proposal. International Journal of Life Cycle Assessment, 25(3), 483–494. doi: https://doi.org/10.1007/s11367-019-01712-9.

    Article  Google Scholar 

  34. Shankar Raman, A., Haapala, K. R., & Morris (2018). “Towards a Standards-Based Methodology for Extending Manufacturing Process Models for Sustainability Assessment.,” doi: https://doi.org/10.1115/MSEC2018-6707.

  35. Hagen, J., Büth, L., Haupt, J., Cerdas, F., & Herrmann, C. (2019). “Live LCA in learning factories: Real time assessment of product life cycles environmental impacts,” Procedia Manufacturing, vol. 45, no. pp. 128–133, 2020, doi: https://doi.org/10.1016/j.promfg.2020.04.083.

  36. Ferrari, A. M., Volpi, L., Settembre-Blundo, D., & García-Muiña, F. E. (2021). Dynamic life cycle assessment (LCA) integrating life cycle inventory (LCI) and enterprise resource planning (ERP) in an industry 4.0 environment. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.125314

    Article  Google Scholar 

  37. Hubka, V., & Eder, E. (1988). Theory of Technical Systems. Springer Berlin. https://doi.org/10.1007/978-3-642-52121-8

    Book  Google Scholar 

  38. Kellens, K., Dewulf, W., Overcash, M., Hauschild, M. Z., & Duflou, J. R. (2012). Methodology for systematic analysis and improvement of manufacturing unit process life cycle inventory (UPLCI) CO2PE! Initiative (cooperative effort on process emissions in manufacturing). Part 2: Case studies. International Journal of Life Cycle Assessment, 17(2), 242–251. https://doi.org/10.1007/s11367-011-0352-0

    Article  Google Scholar 

  39. Raoufi, K., Harper, D. S., & Haapala, K. R. (2020). Reusable unit process life cycle inventory for manufacturing: Metal injection molding. Production Engineering, 14, 5–6. https://doi.org/10.1007/s11740-020-00991-8

    Article  Google Scholar 

  40. ASTM (2018). Standard Guide for Evaluation of Environmental Aspects of Manufacturing Processes.ASTM E2986–18.

  41. ASTM (2020). Standard Guide for Characterizing Environmental Aspects of Manufacturing Processes.ASTM E3012–20.

  42. Raman, A. S., Morris, K. C., & Haapala, K. R. (2023). Reusing and extending Standards-Based Unit Manufacturing process models for characterizing sustainability performance. Journal of Computing and Information Science in Engineering, 23(2), doi: https://doi.org/10.1115/1.4054487.

    Article  Google Scholar 

  43. Kaushal, I., Siddharth, L., & Chakrabarti, A. (2019). A Conceptual Model for Smart Manufacturing Systems. In: A. Chakrabarti, & M. Arora (Eds.), Industry 4.0 and Advanced Manufacturing. Lecture Notes in Mechanical Engineering. Singapore: Springer. https://doi.org/10.1007/978-981-15-5689-0_8

  44. openLCA. http://www.openlca.org/. Accessed 7 Jun 2019

  45. Kozicki, M., & Guzik, K. (2021). Comparison of voc emissions produced by different types of adhesives based on test chambers. Materials. https://doi.org/10.3390/ma14081924

    Article  Google Scholar 

  46. Goedkoop, V. Z. R., Heijungs, M. J., Huijbregts, R., & De Schryver, M., Struijs A. J. (2009). , ReCiPe 2008, A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level; First edition Report I: Characterisation.

  47. Hauschild, M. A., & Huijbregts, M. Z. (2015). Introducing life cycle impact assessment. Springer. https://doi.org/10.1007/978-94-017-9744-3.

  48. LCIA: the ReCiPe model. https://www.rivm.nl/en/life-cycle-assessment-lca/recipe. Accessed 12 Jul 2019

  49. Ciroth, A., Muller, S., Weidema, B., & Lesage, P. (2016). Empirically based uncertainty factors for the pedigree matrix in ecoinvent. International Journal of Life Cycle Assessment, 21(9), 1338–1348. doi: https://doi.org/10.1007/s11367-013-0670-5.

    Article  Google Scholar 

  50. Qin, Y., & Suh, S. (2017). What distribution function do life cycle inventories follow? International Journal of Life Cycle Assessment, 22(7), 1138–1145. doi: https://doi.org/10.1007/s11367-016-1224-4.

    Article  Google Scholar 

  51. Hung, M. L., & Ma, H. W. (2009). Quantifying system uncertainty of life cycle assessment based on Monte Carlo simulation. International Journal of Life Cycle Assessment, 14(1), 19–27. doi: https://doi.org/10.1007/s11367-008-0034-8.

    Article  Google Scholar 

  52. Sun, S., & Ertz, M. (2020). Life cycle assessment and Monte Carlo simulation to evaluate the environmental impact of promoting LNG vehicles. MethodsX, 7, 101046. doi: https://doi.org/10.1016/j.mex.2020.101046.

    Article  Google Scholar 

  53. Heijungs, R. (2020). On the number of Monte Carlo runs in comparative probabilistic LCA. International Journal of Life Cycle Assessment, 25(2), 394–402. doi: https://doi.org/10.1007/s11367-019-01698-4.

    Article  Google Scholar 

  54. Motamedi, M., Sakharnykh, N., & Kaldewey, T. (2021). A Data-Centric Approach for Training Deep Neural Networks with Less Data. no.NeurIPS, pp.3–7.

  55. García-Martín, E., Rodrigues, C. F., Riley, G., & Grahn, H. (2019). Estimation of energy consumption in machine learning. Journal of Parallel and Distributed Computing, 134, 75–88. doi: https://doi.org/10.1016/j.jpdc.2019.07.007.

    Article  Google Scholar 

  56. Zhu, T., Li, J., Jin, Y., Liang, Y., & Ma, G. (2008). Decomposition of benzene by non-thermal plasma processing: Photocatalyst and ozone effect. International Journal of Environmental Science and Technology, 5(3), 375–384. doi: https://doi.org/10.1007/BF03326032.

    Article  Google Scholar 

  57. Evuti, A. M. (2013). A synopsis on biogenic and anthropogenic volatile organic compounds emissions: Hazards and control. International Journal of Engineering Sciences, 2(5), 145–153.

    Google Scholar 

Download references

Acknowledgements

Special thanks to the management of the Shoe factory (name not disclosed) for giving us their valuable time and access to the factory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishaan Kaushal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushal, I., Chakrabarti, A. System Modelling for Collecting Life Cycle Inventory (LCI) Data in MSMEs Using a Conceptual Model for Smart Manufacturing Systems (SMSs). Int. J. of Precis. Eng. and Manuf.-Green Tech. 10, 819–834 (2023). https://doi.org/10.1007/s40684-022-00489-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-022-00489-x

Keywords

Navigation