Skip to main content
Log in

Morphology Engineering for Compact Electrolyte Layer of Solid Oxide Fuel Cell with Roll-to-Roll Eco-production

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Gadolinium-doped ceria (GDC) is sought-after as an electrolyte layer in solid oxide fuel cells because of its high ionic conductivity and low treatment temperature. Recently, some studies have been reported to produce a component layer of solid oxide fuel cell using a Roll-to-Roll (R2R) system because of its characteristics of the cost-effective and eco-friendly advantages. However, the brittleness and low density of GDC prevent it from being mass-produced via the R2R continuous process. Therefore, we attempted to improve the density of GDC-based multi-electrolyte layers through an optimized R2R calendaring process. The finite element method was employed to determine suitable materials for the calendering rolls and the maximum calendering pressure that would reduce the thickness and porosity of the coated electrolyte layer without producing cracks in the layer. The effect of the number of calendering processes on the thickness and porosity of the electrolyte layers was examined as well. Silicon and steel were observed to be best-suited as the materials for the top and bottom rolls, respectively. Moreover, the maximum permissible calendering pressure was determined to be 15 MPa, while the ideal number of calendering processes was found to be 5. Experimental observations using scanning electron microscopy confirmed that the optimized calendering process reduced the thickness and porosity of the coated electrolyte layers by 16.99% and 7.04%, respectively. Thus, our findings suggest that large-area, high-density GDC-based multi-electrolyte layers with smooth surfaces can be produced via the R2R process, which can enable mass production of SOFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Søndergaard, R., Hösel, M., Angmo, D., Larsen-Olsen, T. T., & Krebs, F. C. (2012). Roll-to-roll fabrication of polymer solar cells. Materials today, 15(1–2), 36–49. https://doi.org/10.1016/S1369-7021(12)70019-6

    Article  Google Scholar 

  2. Schwartz, E. (2006). Roll to roll processing for flexible electronics (p. 11). Cornell University.

    Google Scholar 

  3. Ma, L., Chen, J., Tang, W., & Yin, Z. (2017). Transverse vibration and instability of axially travelling web subjected to non-homogeneous tension. International Journal of Mechanical Sciences, 133, 752–758. https://doi.org/10.1016/j.ijmecsci.2017.09.047

    Article  Google Scholar 

  4. Jo, M., Lee, J., Kim, S., Cho, G., Lee, T. M., & Lee, C. (2021). Resistance control of an additively manufactured conductive layer in roll-to-roll gravure printing systems. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(3), 817–828. https://doi.org/10.1007/s40684-021-00345-4

    Article  Google Scholar 

  5. Lee, Y., Jo, M., Cho, G., Joo, C., & Lee, C. (2021). Impact of sensor data characterization with directional nature of fault and statistical feature combination for defect detection on roll-to-roll printed electronics. Sensors, 21(24), 8454. https://doi.org/10.3390/s21248454

    Article  Google Scholar 

  6. Kim, S., Jo, M., Lee, J., & Lee, C. (2021). Transmittance control of a water-repellent-coated layer on a tensioned web in a roll-to-roll slot-die coating system. Polymers, 13(22), 4003. https://doi.org/10.3390/polym13224003

    Article  Google Scholar 

  7. Lee, J., Jo, M., & Lee, C. (2021). Advanced tension model for highly integrated flexible electronics in roll-to-roll manufacturing. IEEE/ASME Transactions on Mechatronics. https://doi.org/10.1109/TMECH.2021.3128992

    Article  Google Scholar 

  8. Lee, J., Kim, S., & Lee, C. (2019). Taper tension profile in roll-to-roll rewinder: Improving adhesive force of pressure-sensitive adhesive film. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(5), 853–860. https://doi.org/10.1007/s40684-019-00100-w

    Article  MathSciNet  Google Scholar 

  9. Lee, C., Kim, S., Jo, M., & Lee, J. (2021). Residual interfacial deformation in flexible copper clad laminate occurring during roll-to-roll composite film manufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(3), 805–815. https://doi.org/10.1007/s40684-021-00349-0

    Article  Google Scholar 

  10. Kang, H. K., Lee, C. W., Shin, K. H., & Kim, S. C. (2011). Modeling and matching design of a tension controller using pendulum dancer in roll-to-roll systems. IEEE Transactions on Industry Applications, 47(4), 1558–1566. https://doi.org/10.1109/TIA.2011.2156376

    Article  Google Scholar 

  11. Mollamahmutoglu, C., & Good, J. K. (2015). Modeling the influence of web thickness and length imperfections resulting from manufacturing processes on wound roll stresses. CIRP Journal of Manufacturing Science and Technology, 8, 22–33. https://doi.org/10.1016/j.cirpj.2014.10.004

    Article  Google Scholar 

  12. Chen, Z., Zheng, Y., Zhou, M., Wong, D. S. H., Chen, L., & Deng, Z. (2016). Model-based feedforward register control of roll-to-roll web printing systems. Control Engineering Practice, 51, 58–68. https://doi.org/10.1016/j.conengprac.2016.03.009

    Article  Google Scholar 

  13. Lee, J., Kim, S., & Lee, C. (2019). Surface drying for brittle material coating without crack defects in large-area roll-to-roll coating system. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(4), 723–730. https://doi.org/10.1007/s40684-019-00104-6

    Article  Google Scholar 

  14. Xia, Z. C., & Hutchinson, J. W. (2000). Crack patterns in thin films. Journal of the Mechanics and Physics of Solids, 48(6–7), 1107–1131. https://doi.org/10.1016/S0022-5096(99)00081-2

    Article  MATH  Google Scholar 

  15. Jo, M., Lee, J., Kim, S., Cho, G., Lee, T. M., & Lee, C. (2020). Web unevenness due to thermal deformation in the roll-to-roll manufacturing process. Applied Sciences, 10(23), 8636. https://doi.org/10.3390/app10238636

    Article  Google Scholar 

  16. Ebler, N. A., Arnason, R., Michaelis, G., & D’Sa, N. (1993). Tension control: Dancer rolls or load cells. IEEE Transactions on Industry Applications, 29(4), 727–739.

    Article  Google Scholar 

  17. Sakamoto, T., & Fujino, Y. (1995). Modelling and analysis of a web tension control system. In 1995 Proceedings of the IEEE International Symposium on Industrial Electronics (Vol. 1, pp. 358–362). IEEE. https://doi.org/10.1109/ISIE.1995.497022

  18. Lynch, A. F., Bortoff, S. A., & Röbenack, K. (2004). Nonlinear tension observers for web machines. Automatica, 40(9), 1517–1524. https://doi.org/10.1016/j.automatica.2004.03.021

    Article  MathSciNet  MATH  Google Scholar 

  19. Shin, K. H., & Kwon, S. O. (2007). The effect of tension on the lateral dynamics and control of a moving web. IEEE Transactions on Industry Applications, 43(2), 403–411. https://doi.org/10.1109/TIA.2006.889742

    Article  Google Scholar 

  20. Lee, C., Kang, H., Kim, C., & Shin, K. (2010). A novel method to guarantee the specified thickness and surface roughness of the roll-to-roll printed patterns using the tension of a moving substrate. Journal of Microelectromechanical Systems, 19(5), 1243–1253. https://doi.org/10.1109/JMEMS.2010.2067194

    Article  Google Scholar 

  21. Lee, J., Shin, K., & Lee, C. (2015). Analysis of dynamic thermal characteristic of register of roll-to-roll multi-layer printing systems. Robotics and Computer-Integrated Manufacturing, 35, 77–83. https://doi.org/10.1016/j.rcim.2015.02.008

    Article  Google Scholar 

  22. Cho, G. Y., Yu, W., Lee, Y. H., Lee, Y., Tanveer, W. H., Kim, Y., & Cha, S. W. (2020). Effects of nanoscale PEALD YSZ interlayer for AAO based thin film solid oxide fuel cells. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(2), 423–430. https://doi.org/10.1007/s40684-019-00082-9

    Article  Google Scholar 

  23. Lee, J., Choi, M., & Lee, W. (2021). Encapsulation of metal catalysts for stable solid oxide fuel cell cathodes. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-020-00290-8

    Article  Google Scholar 

  24. Karimaghaloo, A., Koo, J., Kang, H. S., Song, S. A., Shim, J. H., & Lee, M. H. (2019). Nanoscale surface and interface engineering of solid oxide fuel cells by atomic layer deposition. International Journal of Precision engineering and Manufacturing-green Technology, 6(3), 611–628. https://doi.org/10.1007/s40684-019-00090-9

    Article  Google Scholar 

  25. Shim, J. H., Han, G. D., Choi, H. J., Kim, Y., Xu, S., An, J., & Prinz, F. B. (2019). Atomic layer deposition for surface engineering of solid oxide fuel cell electrodes. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(3), 629–646. https://doi.org/10.1007/s40684-019-00092-7

    Article  Google Scholar 

  26. Son, J., Hwang, S., Hong, S., Heo, S., & Kim, Y. B. (2020). Parameter study on solid oxide fuel cell heat-up process to reaction starting temperature. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(6), 1073–1083. https://doi.org/10.1007/s40684-019-00129-x

    Article  Google Scholar 

  27. Leng, Y. J., Chan, S. H., Jiang, S. P., & Khor, K. A. (2004). Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction. Solid State Ionics, 170(1–2), 9–15. https://doi.org/10.1016/j.ssi.2004.02.026

    Article  Google Scholar 

  28. Steele, B. C. (2000). Appraisal of Ce1− yGdyO2− y/2 electrolytes for IT-SOFC operation at 500° C. Solid State Ionics, 129(1–4), 95–110. https://doi.org/10.1016/S0167-2738(99)00319-7

    Article  Google Scholar 

  29. Mogensen, M., Sammes, N. M., & Tompsett, G. A. (2000). Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics, 129(1–4), 63–94. https://doi.org/10.1016/S0167-2738(99)00318-5

    Article  Google Scholar 

  30. Liu, Q. L., Khor, K. A., Chan, S. H., & Chen, X. J. (2006). Anode-supported solid oxide fuel cell with yttria-stabilized zirconia/gadolinia-doped ceria bilalyer electrolyte prepared by wet ceramic co-sintering process. Journal of Power Sources, 162(2), 1036–1042. https://doi.org/10.1016/j.jpowsour.2006.08.024

    Article  Google Scholar 

  31. Jeong, C., Lee, J. H., Park, M., Hong, J., Kim, H., Son, J. W., Lee, J. H., Kim, B. K., & Yoon, K. J. (2015). Design and processing parameters of La2NiO4+ δ-based cathode for anode-supported planar solid oxide fuel cells (SOFCs). Journal of Power Sources, 297, 370–378.

    Article  Google Scholar 

  32. Kim, S., Lee, J., Jo, M., & Lee, C. (2020). Numerical modeling of ink widening and coating gap in roll-to-roll slot-die coating of solid oxide fuel cell electrolytic layer. Polymers, 12(12), 2927. https://doi.org/10.3390/polym12122927

    Article  Google Scholar 

  33. Lee, J., Byeon, J., & Lee, C. (2020). Fabrication of thickness-controllable double layer electrolyte using roll-to-roll additive manufacturing system. International Journal of Precision Engineering and Manufacturing-Green Technology, 7, 1–8.

    Article  Google Scholar 

  34. Kim, S., Lee, J., & Lee, C. (2019). Computational fluid dynamics model for thickness and uniformity prediction of coating layer in slot-die process. The International Journal of Advanced Manufacturing Technology, 104(5), 2991–2997. https://doi.org/10.1007/s00170-019-04093-3

    Article  MathSciNet  Google Scholar 

  35. Song, X., Meng, F., Kong, M., Liu, Z., Huang, L., Zheng, X., & Zeng, Y. (2017). Relationship between cracks and microstructures in APS YSZ coatings at elevated temperatures. Materials Characterization, 131, 277–284. https://doi.org/10.1016/j.matchar.2017.07.008

    Article  Google Scholar 

  36. Roisum, D. R. (1996). The Mechanics of Rollers. Tappi press.

    Google Scholar 

  37. Kim, J., Kim, J., Yoon, K. J., Son, J. W., Lee, J. H., Lee, J. H., Lee, H. W., & Ji, H. I. (2020). Solid oxide fuel cells with zirconia/ceria bilayer electrolytes via roll calendering process. Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2020.156318

    Article  Google Scholar 

  38. Toor, S. Y., & Croiset, E. (2020). Reducing sintering temperature while maintaining high conductivity for SOFC electrolyte: Copper as sintering aid for Samarium Doped Ceria. Ceramics International, 46(1), 1148–1157. https://doi.org/10.1016/j.ceramint.2019.09.083

    Article  Google Scholar 

  39. Wang, Y., Jia, C., Lyu, Z., Han, M., Wu, J., Sun, Z., Iguchi, F., Yashiro, K., & Kawada, T. (2021). Performance and stability analysis of SOFC containing thin and dense gadolinium-doped ceria interlayer sintered at low temperature. Journal of Materiomics. https://doi.org/10.1016/j.jmat.2021.09.001

    Article  Google Scholar 

  40. Kim, J., Ahn, J., Shin, J., Yoon, K. J., Son, J. W., Lee, J. H., Shin, D., Lee, H. W., & Ji, H. I. (2019). Enhanced sinterability and electrochemical performance of solid oxide fuel cells via a roll calendering process. Journal of Materials Chemistry A, 7(16), 9958–9967. https://doi.org/10.1039/c9ta01818b

    Article  Google Scholar 

  41. Jambhapuram, M., Good, J. K., & Azoug, A. (2021). Finite element investigation of lamination-induced curl due to residual stresses. Forces in Mechanics, 4, 100034. https://doi.org/10.1016/j.finmec.2021.100034

    Article  Google Scholar 

  42. Liu, Y., Zhang, R., Wang, J., & Wang, Y. (2021). Current and future lithium-ion battery manufacturing. IScience, 24(4), 102332. https://doi.org/10.1016/j.isci.2021.102332

    Article  Google Scholar 

  43. Cordill, M. J., Jörg, T., Többens, D. M., & Mitterer, C. (2021). Improved fracture resistance of Cu/Mo bilayers with thickness tailoring. Scripta Materialia, 202, 113994. https://doi.org/10.1016/j.scriptamat.2021.113994

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2020R1A2C1012428) & (No.2020R1A5A1019649).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changwoo Lee.

Ethics declarations

Conflict of interest

This manuscript has not been published or presented elsewhere in part or in entirety and is not under consideration by another journal. We have read and understood your journal’s policies, and we believe that neither the manuscript nor the study violates any of these. There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 607 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, M., Kim, S. & Lee, C. Morphology Engineering for Compact Electrolyte Layer of Solid Oxide Fuel Cell with Roll-to-Roll Eco-production. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 431–441 (2022). https://doi.org/10.1007/s40684-022-00425-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-022-00425-z

Keywords

Navigation