Skip to main content
Log in

Ultrathin Biocompatible Electrospun Fiber Films for Self-Powered Human Motion Sensor

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

In recent years, triboelectric nanogenerator (TENG) has been proven to be an effective and simple solution for self-powered wearable sensing, and a wide variety of materials and methods have been applied to TENG based sensors. In this study, an ultrathin fiber film with nanoporous brain-like structure (BUF) was obtained by cold-pressing the electrospun biocompatible fiber mats, and a wearable TENG sensor based on the BUF films that could sensitively detect human motion was demonstrated. This simply designed self-powered sensor was composed of Kapton as the shell and ultrathin, biocompatible poly L-lactic acid and ethyl cellulose (EC) fiber films as the triboelectric layers, prepared by convenient electrospinning method and cold-pressing. Compared to as-spun fiber mats, cold-pressed fiber membranes not only acquire overall compact structure but also remained porous surface morphology, which improved the triboelectric outputs and operational stability of TENG. Three TENGs were fabricated to evaluate the effects of different triboelectric layers on triboelectric outputs, and the BUF-TENG had the maximum triboelectric outputs (19 V, 630 nA at 3.5 Hz) and longer life than as-spun fiber mats based TENG. The BUF-TENG had linear relationship between triboelectric outputs and frequency, and sensitivities of 32.4, 0.94 and 0.22 V Hz−1 in the range of 0.1–0.35, 0.35–2 and 2–3.5 Hz, respectively. Moreover, a self-powered sensor based on the BUF-TENG was proposed to sensitively detect human walking state and limbs motion. With convenient preparation process and biocompatible materials, the BUF-TENG sensor could be a potential self-powered wearable and portable sensor in future health care and monitoring field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

TENG:

Triboelectric nanogenerator

BUF:

The brain-like ultrathin fiber films

PLLA:

Poly L-lactic acid

EC:

Ethyl cellulose

DCM:

Dichloromethane

SEM:

Scanning electron microscope

BUF-TENG:

The brain-like ultrathin fiber films based TENG

V oc :

Open-circuit voltage

I sc :

Short-circuit current

Q sc :

Short-circuit charge transfer amount (Qsc)

S :

Area size

σ :

Average charge density

t :

Time

x(t) :

Distance

d 0 :

The effective thickness constant

f :

Frequency

References

  1. Bogue, R. (2007). MEMS sensors: Past, present and future. Sensor Review, 27(1), 7–13.

    Google Scholar 

  2. Ma, Y., Liu, N., Li, L., Hu, X., Zou, Z., Wang, J., et al. (2017). A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nature Communications, 8(1), 1207.

    Google Scholar 

  3. Lipomi, D. J., Vosgueritchian, M., Tee, B. C. K., Hellstrom, S. L., Lee, J. A., Fox, C. H., et al. (2011). Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotechnology, 6(12), 788–792.

    Google Scholar 

  4. Park, D. Y., Joe, D. J., Kim, D. H., Park, H., Han, J. H., Jeong, C. K., et al. (2017). Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Advanced Materials, 29(37), 1702308.

    Google Scholar 

  5. Zou, Y., Tan, P., Shi, B., Ouyang, H., Jiang, D., Liu, Z., et al. (2019). A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nature Communications, 10(1), 2695.

    Google Scholar 

  6. Khandelwal, G., Chandrasekhar, A., Maria Joseph Raj, N. P., & Kim, S.-J. (2019). Metal-organic framework: A novel material for triboelectric nanogenerator-based self-powered sensors and systems. Advanced Energy Materials, 9(14), 1803581.

    Google Scholar 

  7. Lin, Z., Chen, J., Li, X., Zhou, Z., Meng, K., Wei, W., et al. (2017). Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring. ACS Nano, 11(9), 8830–8837.

    Google Scholar 

  8. Seung, W., Gupta, M. K., Lee, K. Y., Shin, K.-S., Lee, J.-H., Kim, T. Y., et al. (2015). Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano, 9(4), 3501–3509.

    Google Scholar 

  9. Guo, W., Zhang, X., Yu, X., Wang, S., Qiu, J., Tang, W., et al. (2016). Self-powered electrical stimulation for enhancing neural differentiation of mesenchymal stem cells on graphene–poly(3,4-ethylenedioxythiophene) hybrid microfibers. ACS Nano, 10(5), 5086–5095.

    Google Scholar 

  10. Khandelwal, G., Minocha, T., Yadav, S. K., Chandrasekhar, A., Maria Joseph Raj, N. P., Gupta, S. C., et al. (2019). All edible materials derived biocompatible and biodegradable triboelectric nanogenerator. Nano Energy, 65, 104016.

    Google Scholar 

  11. Chandrasekhar, A., Vivekananthan, V., Khandelwal, G., & Kim, S. J. (2019). A fully packed water-proof, humidity resistant triboelectric nanogenerator for transmitting Morse code. Nano Energy, 60, 850–856.

    Google Scholar 

  12. Zhang, X.-S., Han, M.-D., Wang, R.-X., Meng, B., Zhu, F.-Y., Sun, X.-M., et al. (2014). High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment. Nano Energy, 4, 123–131.

    Google Scholar 

  13. Wang, S., Zi, Y., Zhou, Y. S., Li, S., Fan, F., Lin, L., et al. (2016). Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. Journal of Materials Chemistry A, 4(10), 3728–3734.

    Google Scholar 

  14. Wang, J., Wen, Z., Zi, Y., Zhou, P., Lin, J., Guo, H., et al. (2016). All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors. Advanced Functional Materials, 26(7), 1070–1076.

    Google Scholar 

  15. Zhao, J., Li, H., Li, C., Zhang, Q., Sun, J., Wang, X., et al. (2018). MOF for template-directed growth of well-oriented nanowire hybrid arrays on carbon nanotube fibers for wearable electronics integrated with triboelectric nanogenerators. Nano Energy, 45, 420–431.

    Google Scholar 

  16. Xia, X., Chen, J., Liu, G., Javed, M. S., Wang, X., & Hu, C. (2017). Aligning graphene sheets in PDMS for improving output performance of triboelectric nanogenerator. Carbon, 111, 569–576.

    Google Scholar 

  17. Liu, H., Zhao, G., Wu, M., Liu, Z., Xiang, D., Wu, C., et al. (2019). Ionogel infiltrated paper as flexible electrode for wearable all-paper based sensors in active and passive modes. Nano Energy, 66, 104161.

    Google Scholar 

  18. Chun, J., Kim, J. W., Jung, W-s, Kang, C.-Y., Kim, S.-W., Wang, Z. L., et al. (2015). Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy & Environmental Science, 8(10), 3006–3012.

    Google Scholar 

  19. Zhao, G., Zhang, X., Cui, X., Wang, S., Liu, Z., Deng, L., et al. (2018). Piezoelectric polyacrylonitrile nanofiber film-based dual-function self-powered flexible sensor. ACS Applied Materials & Interfaces, 10(18), 15855–15863.

    Google Scholar 

  20. Jang, S., Kim, Y., Lee, S., & Oh, J. H. (2019). Optimization of electrospinning parameters for electrospun nanofiber-based triboelectric nanogenerators. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(4), 731–739.

    Google Scholar 

  21. Chen, F., Wu, Y., Ding, Z., Xia, X., Li, S., Zheng, H., et al. (2019). A novel triboelectric nanogenerator based on electrospun polyvinylidene fluoride nanofibers for effective acoustic energy harvesting and self-powered multifunctional sensing. Nano Energy, 56, 241–251.

    Google Scholar 

  22. Mi, H.-Y., Jing, X., Zheng, Q., Fang, L., Huang, H.-X., Turng, L.-S., et al. (2018). High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing. Nano Energy, 48, 327–336.

    Google Scholar 

  23. Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., & Ramkumar, S. S. (2005). Electrospinning of nanofibers. Journal of Applied Polymer Science, 96(2), 557–569.

    Google Scholar 

  24. Huang, T., Wang, C., Yu, H., Wang, H., Zhang, Q., & Zhu, M. (2015). Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy, 14, 226–235.

    Google Scholar 

  25. Cheon, S., Kang, H., Kim, H., Son, Y., Lee, J. Y., Shin, H.-J., et al. (2018). High-performance triboelectric nanogenerators based on electrospun polyvinylidene fluoride-silver nanowire composite nanofibers. Advanced Functional Materials, 28(2), 1703778.

    Google Scholar 

  26. Guo, Y., Zhang, X.-S., Wang, Y., Gong, W., Zhang, Q., Wang, H., et al. (2018). All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy, 48, 152–160.

    Google Scholar 

  27. Zhang, J.-H., Li, Y., Du, J., Hao, X., & Huang, H. (2019). A high-power wearable triboelectric nanogenerator prepared from self-assembled electrospun poly(vinylidene fluoride) fibers with a heart-like structure. Journal of Materials Chemistry A, 7(19), 11724–11733.

    Google Scholar 

  28. McCann, J. T., Marquez, M., & Xia, Y. (2006). Highly porous fibers by electrospinning into a cryogenic liquid. Journal of the American Chemical Society, 128(5), 1436–1437.

    Google Scholar 

  29. Schofer, M. D., Roessler, P. P., Schaefer, J., Theisen, C., Schlimme, S., Heverhagen, J. T., et al. (2011). Electrospun PLLA nanofiber scaffolds and their use in combination with BMP-2 for reconstruction of bone defects. PLoS One, 6(9), e25462.

    Google Scholar 

  30. Yang, F., Murugan, R., Wang, S., & Ramakrishna, S. (2005). Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 26(15), 2603–2610.

    Google Scholar 

  31. Baji, A., Mai, Y.-W., Wong, S.-C., Abtahi, M., & Chen, P. (2010). Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Composites Science and Technology, 70(5), 703–718.

    Google Scholar 

  32. Chen, J.-P., & Su, C.-H. (2011). Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomaterialia, 7(1), 234–243.

    Google Scholar 

  33. Luong, N. D., Moon, I.-S., Lee, D. S., Lee, Y.-K., & Nam, J.-D. (2008). Surface modification of poly(l-lactide) electrospun fibers with nanocrystal hydroxyapatite for engineered scaffold applications. Materials Science and Engineering C, 28(8), 1242–1249.

    Google Scholar 

  34. Zhang, K., Wang, X., Yang, Y., Wang, L., Zhu, M., Hsiao, B. S., et al. (2010). Aligned and molecularly oriented semihollow ultrafine polymer fiber yarns by a facile method. Journal of Polymer Science Part B-Polymer Physics, 48(10), 1118–1125.

    Google Scholar 

  35. Poologasundarampillai, G., Yu, B., Jones, J. R., & Kasuga, T. (2011). Electrospun silica/PLLA hybrid materials for skeletal regeneration. Soft Matter, 7(21), 10241–10251.

    Google Scholar 

  36. Liu, Z., Li, X., Yang, Y., Zhang, K., Wang, X., Zhu, M., et al. (2013). Control of structure and morphology of highly aligned PLLA ultrafine fibers via linear-jet electrospinning. Polymer, 54(21), 6045–6051.

    Google Scholar 

  37. El-Hadi, A. M., Mohan, S. D., Davis, F. J., & Mitchell, G. R. (2014). Enhancing the crystallization and orientation of electrospinning poly (lactic acid) (PLLA) by combining with additives. Journal of Polymer Research, 21(12), 605.

    Google Scholar 

  38. Jash, A., & Lim, L.-T. (2018). Triggered release of hexanal from an imidazolidine precursor encapsulated in poly(lactic acid) and ethylcellulose carriers. Journal of Materials Science, 53(3), 2221–2235.

    Google Scholar 

  39. Lu, H., Wang, Q., Li, G., Qiu, Y., & Wei, Q. (2017). Electrospun water-stable zein/ethyl cellulose composite nanofiber and its drug release properties. Materials Science and Engineering C, 74, 86–93.

    Google Scholar 

  40. Desai, J., Alexander, K., & Riga, A. (2006). Characterization of polymeric dispersions of dimenhydrinate in ethyl cellulose for controlled release. International Journal of Pharmaceutics, 308(1), 115–123.

    Google Scholar 

  41. Diaz, A. F., & Felix-Navarro, R. M. (2004). A semi-quantitative tribo-electric series for polymeric materials: The influence of chemical structure and properties. Journal of Electrostatics, 62(4), 277–290.

    Google Scholar 

  42. Zhang, X.-S., Han, M.-D., Wang, R.-X., Zhu, F.-Y., Li, Z.-H., Wang, W., et al. (2013). Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Letters, 13(3), 1168–1172.

    Google Scholar 

  43. Wang, S., Lin, L., & Wang, Z. L. (2012). Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Letters, 12(12), 6339–6346.

    Google Scholar 

  44. Zhao, G., Zhang, Y., Shi, N., Liu, Z., Zhang, X., Wu, M., et al. (2019). Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy, 59, 302–310.

    Google Scholar 

  45. Zi, Y., Niu, S., Wang, J., Wen, Z., Tang, W., & Wang, Z. L. (2015). Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nature Communications, 6(1), 8376.

    Google Scholar 

  46. Zi, Y., Guo, H., Wen, Z., Yeh, M.-H., Hu, C., & Wang, Z. L. (2016). Harvesting low-frequency (< 5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator. ACS Nano, 10(4), 4797–4805.

    Google Scholar 

  47. Gu, L., Cui, N., Cheng, L., Xu, Q., Bai, S., Yuan, M., et al. (2013). Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. Nano Letters, 13(1), 91–94.

    Google Scholar 

  48. Fan, F.-R., Lin, L., Zhu, G., Wu, W., Zhang, R., & Wang, Z. L. (2012). Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Letters, 12(6), 3109–3114.

    Google Scholar 

  49. Zhu, G., Pan, C., Guo, W., Chen, C.-Y., Zhou, Y., Yu, R., et al. (2012). Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Letters, 12(9), 4960–4965.

    Google Scholar 

  50. Lin, Z.-H., Zhu, G., Zhou, Y. S., Yang, Y., Bai, P., Chen, J., et al. (2013). A self-powered triboelectric nanosensor for mercury ion detection. Angewandte Chemie International Edition, 52(19), 5065–5069.

    Google Scholar 

  51. Han, M., Zhang, X.-S., Meng, B., Liu, W., Tang, W., Sun, X., et al. (2013). r-shaped hybrid nanogenerator with enhanced piezoelectricity. ACS Nano, 7(10), 8554–8560.

    Google Scholar 

  52. Niu, S., Wang, S., Lin, L., Liu, Y., Zhou, Y. S., Hu, Y., et al. (2013). Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy & Environmental Science, 6(12), 3576–3583.

    Google Scholar 

  53. Yu, B., Yu, H., Wang, H., Zhang, Q., & Zhu, M. (2017). High-power triboelectric nanogenerator prepared from electrospun mats with spongy parenchyma-like structure. Nano Energy, 34, 69–75.

    Google Scholar 

Download references

Acknowledgements

The works was supported by the National Natural Science Foundation of China (51675509) and the National Key R&D project from Minister of Science and Technology, China (2016YFA0202703). We thank Dr. Weihong Jia for her help on AFM test and analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Honggang Wang or Linlin Li.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, G., Gong, S., Wang, H. et al. Ultrathin Biocompatible Electrospun Fiber Films for Self-Powered Human Motion Sensor. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 855–868 (2021). https://doi.org/10.1007/s40684-020-00246-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00246-y

Keywords

Navigation