Skip to main content
Log in

Reviewing Sustainability Interpretation of Electrical Discharge Machining Process using Triple Bottom Line Approach

  • Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Nontraditional machining processes are frequently used in product manufacturing when either the material is difficult to machine, or a very precise geometry is required. Electrical discharge machining (EDM) is considered as a popular nontraditional machining process. EDM process is used to machine a diverse range of engineering materials such as hard materials, ceramics and modern composite materials. It is primarily used in the finishing of components related to aerospace, automotive, surgical, electronic and biomedical industrial sectors. However, high energy consumption, hazardous dielectric waste generation, toxic emissions and fire hazards are the major concerns with respect to sustainability. The present study reviews the state-of-the-art research performed to explore the sustainability aspects of EDM process under the framework of three pillars or triple bottom line sustainability approach. The study reveals economic, environmental and social concerns for the EDM process. Major economic concerns were found to be energy consumption, electrode preparation and treatment of dielectric fluid. Major environmental concerns were based on the hazardous emissions and disposal of dielectric fluid. However, major social concerns were linked with the inhalation of fumes, skin diseases and fire or explosion related threat. The study also recommends different solutions for all economic, environmental and social concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

redrawn from [65]

Fig. 3
Fig. 4

(adopted from [17, 18])

Fig. 5

(adopted from [66])

Fig. 6
Fig. 7
Fig. 8

(adopted from [65])

Similar content being viewed by others

References

  1. Boothroyd, G., & Winston, A. K. (1989). Non-conventional machining processes. In Fundamentals of machining and machine tools. New York: Marcel Dekker Inc.

    Google Scholar 

  2. Webzell, S. (2001). That first step into EDM Mach (p. 41). Kent: Findlay Publ. Ltd.

    Google Scholar 

  3. Lazarenko, B.R. (1943). To invert the effect of wear on electric power contacts. Diss. All-Union Inst. Electro Tech. Moscow/CCCP (in Russ).

  4. Kumar, S., Singh, R., Singh, T. P., & Sethi, B. L. (2009). Surface modification by electrical discharge machining: A review. Journal of Materials Processing Technology, 209, 3675–3687. https://doi.org/10.1016/j.jmatprotec.2008.09.032.

    Article  Google Scholar 

  5. Jayal, A. D., Badurdeen, F., Dillon, O. W., & Jawahir, I. S. (2010). Sustainable manufacturing: Modeling and optimization challenges at the product, process and system levels. CIRP Journal of Manufacturing Science and Technology, 2, 144–152. https://doi.org/10.1016/j.cirpj.2010.03.006.

    Article  Google Scholar 

  6. Kopac, J. (2009). Achievements of sustainable manufacturing by machining. Journal of Achievements in Materials and Manufacturing Engineering, 34, 180–187.

    Google Scholar 

  7. Hacking, T., & Guthrie, P. (2008). A framework for clarifying the meaning of triple bottom-line, integrated, and sustainability assessment. Environmental Impact Assessment Review, 28, 73–89. https://doi.org/10.1016/j.eiar.2007.03.002.

    Article  Google Scholar 

  8. Kalpakjian, S., & Schmid, S. R. (2006). Manufacturing, engineering and technology (5th ed.). Upper Saddle River: Pearson Education Inc. (ISBN 0-13-148965-8).

    Google Scholar 

  9. Mani, M., Larborn, J., Johansson, B., Lyons, K. W., & Morris, K. C. (2016). Standard representations for sustainability characterization of industrial processes. Journal of Manufacturing Science and Engineering, 138, 101008. https://doi.org/10.1115/1.4033922.

    Article  Google Scholar 

  10. Mani, M., Madan, J., Lee, J. H., Lyons, K., Gupta, S.K. (2012). Characterizing sustainability for manufacturing performance assessment. Proceedings ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 1–10. https://doi.org/10.1115/DETC2012-70455.

  11. Garretson, I. C., Mani, M., Leong, S., Lyons, K. W., & Haapala, K. R. (2016). Terminology to support manufacturing process characterization and assessment for sustainable production. Journal of Cleaner Production, 139, 986–1000. https://doi.org/10.1016/j.jclepro.2016.08.103.

    Article  Google Scholar 

  12. ASTM International (2016). Standard guide for characterizing environmental aspects of manufacturing processes, E3012 − 16. West Conshohocken, PA: ASTM International. http://compass.astm.org/EDIT/html_annot.cgi?E3012+16. Accessed 15 Feb 2019.

  13. Peralta Álvarez, M. E., Marcos Bárcena, M., & Aguayo González, F. (2016). A review of sustainable machining engineering: optimization process through triple bottom line. Journal of Manufacturing Science and Engineering, 138, 100801. https://doi.org/10.1115/1.4034277.

    Article  Google Scholar 

  14. Rosen, M. A., & Kishawy, H. A. (2012). Sustainable manufacturing and design: Concepts, practices and needs. Sustainability, 4, 154–174. https://doi.org/10.3390/su4020154.

    Article  Google Scholar 

  15. Kellens, K., Dewulf, W., Duflou, J.R. (2011). Preliminary environmental assessment of electrical discharge machining. In Proceedings of the 18th CIRP International Conference on Life Cycle Engineering (Braunschweig, Germany), pp. 5–10.

  16. Ulutan, D., & Ozel, T. (2011). International Journal of Machine Tools & Manufacture Machining induced surface integrity in titanium and nickel alloys: A review. International Journal of Machine Tools and Manufacture, 51, 250–280. https://doi.org/10.1016/j.ijmachtools.2010.11.003.

    Article  Google Scholar 

  17. Shrivastava, P. K., & Dubey, A. K. (2014). Electrical discharge machining–based hybrid machining processes: A review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 228, 799–825. https://doi.org/10.1177/0954405413508939.

    Article  Google Scholar 

  18. Norliana, M. A., Solomon, D. G., & Bahari, M. F. (2007). A review on current research trends in electrical discharge machining. International Journal of Machine Tools and Manufacture, 47, 1214–1228.

    Article  Google Scholar 

  19. Kellens, K., Dewulf, W., Duflou, J. R. (2011). Preliminary Environmental Assessment of Electrical Discharge Machining. In Proceedings of the 18th CIRP International Conference on Life Cycle Engineering, Braunschweig, Germany, pp. 5–10.

  20. Uhlmann, E., Piltz, S., & Doll, U. (2005). Machining of micro / miniature dies and moulds by electrical discharge machining—Recent development. Journal of Materials Processing Technology, 167, 488–493. https://doi.org/10.1016/j.jmatprotec.2005.06.013.

    Article  Google Scholar 

  21. Lin, Y. C., Chuang, F. P., Wang, A. C., & Chow, H. M. (2014). Machining characteristics of hybrid EDM with ultrasonic vibration and assisted magnetic force. International Journal of Precision Engineering and Manufacturing, 15, 1143–1149. https://doi.org/10.1007/s12541-014-0449-z.

    Article  Google Scholar 

  22. Talla, G., Gangopadhayay, S., & Biswas, C. K. (2017). State of the art in powder-mixed electric discharge machining: A review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231, 2511–2526. https://doi.org/10.1177/0954405416634265.

    Article  Google Scholar 

  23. Volosova, M. A., Okunkova, A. A., Povolotskiy, D. E., & Podrabinnik, P. A. (2015). Study of electrical discharge machining for the parts of nuclear industry usage. Mechanical Industries, 16, 706. https://doi.org/10.1051/meca/2015091.

    Article  Google Scholar 

  24. Nourbakhsh, F., Rajurkar, K. P., Malshe, A. P., & Cao, J. (2013). Wire electro-discharge machining of titanium alloy. Procedia CIRP, 5, 13–18. https://doi.org/10.1016/j.procir.2013.01.003.

    Article  Google Scholar 

  25. Prasad, A. V. S. R., Ramji, K., & Datta, G. L. (2014). An Experimental Study of Wire EDM on Ti-6Al-4V Alloy. Procedia Material Science, 5, 2567–2576. https://doi.org/10.1016/j.mspro.2014.07.517.

    Article  Google Scholar 

  26. Alidoosti, A., Ghafari-Nazari, A., Moztarzadeh, F., Jalali, N., Moztarzadeh, S., & Mozafari, M. (2013). Electrical discharge machining characteristics of nickel-titanium shape memory alloy based on full factorial design. Journal of Intelligent Material Systems and Structures, 24, 1546–1556. https://doi.org/10.1177/1045389X13476147.

    Article  Google Scholar 

  27. Caiazzo, F., Cuccaro, L., Fierro, I., Petrone, G., & Alfieri, V. (2015). Electrical discharge machining of René 108 DS nickel superalloy for aerospace turbine blades. Procedia CIRP, 33, 382–387. https://doi.org/10.1016/j.procir.2015.06.086.

    Article  Google Scholar 

  28. Gadow, R., Landfried, R., Kern, F. (2016). Materials and process development for wear resistant precision tools with high geometrical complexity. In Proceedings of the III Advanced Ceramics and Applications Conference, pp. 25–33.

  29. Munz, M., Risto, M., Haas, R., Landfried, R., Kern, F., & Gadow, R. (2013). Machinability of ZTA-TiC ceramics by electrical discharge drilling. Procedia CIRP, 6, 77–82. https://doi.org/10.1016/j.procir.2013.03.022.

    Article  Google Scholar 

  30. Yerui, F., Yongfeng, G., & Zongfeng, L. (2016). Experimental Investigation of EDM Parameters for TiC/Ni Cermet Machining. Procedia CIRP, 42, 18–22. https://doi.org/10.1016/j.procir.2016.02.177.

    Article  Google Scholar 

  31. Sabur, A., Ali, M. Y., Maleque, M. A., & Khan, A. A. (2013). Investigation of material removal characteristics in EDM of nonconductive ZrO2 ceramic. Procedia Engineering, 56, 696–701. https://doi.org/10.1016/j.proeng.2013.03.180.

    Article  Google Scholar 

  32. Yoo, H. K., Ko, J. H., Lim, K. Y., Kwon, W. T., & Kim, Y. W. (2015). Micro-electrical discharge machining characteristics of newly developed conductive SiC ceramic. Ceramics International, 41, 3490–3496. https://doi.org/10.1016/j.ceramint.2014.10.175.

    Article  Google Scholar 

  33. Hanaoka, D., Fukuzawa, Y., Ramirez, C., Miranzo, P., Osendi, M. I., & Belmonte, M. (2013). Electrical discharge machining of ceramic/carbon nanostructure composites. Procedia CIRP, 6, 95–100. https://doi.org/10.1016/j.procir.2013.03.033.

    Article  Google Scholar 

  34. Patil, N. G., & Brahmankar, P. K. (2016). Semi-empirical modeling of surface roughness in wire electro-discharge machining of ceramic particulate reinforced Al matrix composites. Procedia CIRP, 42, 280–285. https://doi.org/10.1016/j.procir.2016.02.286.

    Article  Google Scholar 

  35. Naveed, R., Mufti, N. A., Mughal, M. P., Saleem, M. Q., & Ahmed, N. (2017). Machining of curved profiles on tungsten carbide-cobalt composite using wire electric discharge process. The International Journal of Advanced Manufacturing Technology, 93, 1367–1378. https://doi.org/10.1007/s00170-017-0592-7.

    Article  Google Scholar 

  36. Selvarajan, L., Manohar, M., Udhaya Kumar, A., & Dhinakaran, P. (2017). Modelling and experimental investigation of process parameters in EDM of Si3N4-TiN composites using GRA-RSM. Journal of Mechanical Science and Technology, 31, 111–122. https://doi.org/10.1007/s12206-016-1009-5.

    Article  Google Scholar 

  37. Yu, Z., Jun, T., & Masanori, K. (2004). Dry electrical discharge machining of cemented carbide. Journal of Materials Processing Technology, 149, 353–357. https://doi.org/10.1016/j.jmatprotec.2003.10.044.

    Article  Google Scholar 

  38. Yoo, H. K., Kwon, W. T., & Kang, S. (2014). Development of a new electrode for micro-electrical discharge machining (EDM) using Ti(C, N)-based cermet. International Journal of Precision Engineering and Manufacturing, 15, 609–616. https://doi.org/10.1007/s12541-014-0378-x.

    Article  Google Scholar 

  39. WCED, U. N. (1987). Our common future. World Comm. Environ. Dev. Univ. Press, 400. https://doi.org/10.1080/07488008808408783

  40. Garbie, I. H. (2015). Sustainability optimization in manufacturing enterprises. Procedia CIRP, 26, 504–509. https://doi.org/10.1016/j.procir.2014.07.085.

    Article  Google Scholar 

  41. Dornfeld, D. A. (2014). Moving towards green and sustainable manufacturing. International Journal of Precision Engineering and Manufacturing Green Technology, 1, 63–66. https://doi.org/10.1007/s40684-014-0010-7.

    Article  Google Scholar 

  42. Alhaddi, H. (2015). Triple bottom line and sustainability: A literature review. Business and Management Studies, 1, 6–10. https://doi.org/10.11114/bms.v1i2.752.

    Article  Google Scholar 

  43. Pope, J., Annandale, D., & Morrison-Saunders, A. (2004). Conceptualising sustainability assessment. Environmental Impact Assessment Review, 24, 595–616.

    Article  Google Scholar 

  44. Gopalakannan, S., & Senthilvelan, T. (2012). Effect of electrode materials on electric discharge machining of 316 L and 17-4 PH stainless steels. Journal of Minerals and Materials Characterization and Engineering, 11, 685–690.

    Article  Google Scholar 

  45. Yin, Q., Wang, B., Zhang, Y., Ji, F., & Liu, G. (2014). Research of lower tool electrode wear in simultaneous EDM and ECM. Journal of Materials Processing Technology, 214, 1759–1768. https://doi.org/10.1016/j.jmatprotec.2014.03.025.

    Article  Google Scholar 

  46. Tristo, G., Bissacco, G., Lebar, A., & Valentinčič, J. (2015). Real time power consumption monitoring for energy efficiency analysis in micro EDM milling. The International Journal of Advanced Manufacturing Technology, 78, 1511–1521. https://doi.org/10.1007/s00170-014-6725-3.

    Article  Google Scholar 

  47. Yeo, S. H., & New, A. K. (1999). Method for green process planning in electric discharge machining. The International Journal of Advanced Manufacturing Technology, 15, 287–291. https://doi.org/10.1007/s001700050068.

    Article  Google Scholar 

  48. Kumar, S. V., & Kumar, M. P. (2014). Optimization of cryogenic cooled EDM process parameters using grey relational analysis. Journal of Mechanical Science and Technology, 28, 3777–3784. https://doi.org/10.1007/s12206-014-0840-9.

    Article  Google Scholar 

  49. Tönshoff, H. K., Egger, R., & Klocke, F. (1996). Environmental and safety aspects of electrophysical and electrochemical processes. CIRP Annals Manufacturing Technology, 45(2), 553–568. https://doi.org/10.1016/S0007-8506(07)60510-1

    Article  Google Scholar 

  50. Sven, E., Dott, W., & Eisentraeger, A. (2006). Electrical discharge machining: Occupational hygienic characterization using emission-based monitoring. International Journal of Hygiene and Environmental Health, 209, 423–434. https://doi.org/10.1016/j.ijheh.2006.04.005.

    Article  Google Scholar 

  51. Abbas, N. M., Yusoff, N., & Wahab, R. M. (2012). Electrical discharge machining (EDM): Practices in malaysian industries and possible change towards green manufacturing. Procedia Engineering, 41, 1684–1688. https://doi.org/10.1016/j.proeng.2012.07.368.

    Article  Google Scholar 

  52. Valaki, J. B., Rathod, P. P., & Sankhavara, C. D. (2016). Investigations on technical feasibility of Jatropha curcas oil based bio dielectric fluid for sustainable electric discharge machining (EDM). Journal of Manufacturing Processes, 22, 151–160. https://doi.org/10.1016/j.jmapro.2016.03.004.

    Article  Google Scholar 

  53. Valaki, J. B., & Rathod, P. P. (2015). Assessment of operational feasibility of waste vegetable oil based bio-dielectric fluid for sustainable electric discharge machining (EDM). The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-015-7169-0.

    Google Scholar 

  54. Paswan, K., Ranjan, R., Hembram, S., Bajaj, R., Rai Dixit, A., Mandol, A., et al. (2016). Experimental investigation on machining performance using deionized water as dielectric in die-sinking EDM. . Indian Journal Science Technology, 9, 2–6. https://doi.org/10.17485/ijst/2016/v9i34/100912.

    Article  Google Scholar 

  55. Saha, S. K., & Choudhury, S. K. (2009). Experimental investigation and empirical modeling of the dry electric discharge machining process. International Journal of Machine Tools and Manufacture, 49, 297–308. https://doi.org/10.1016/j.ijmachtools.2008.10.012.

    Article  Google Scholar 

  56. Gholipoor, A., Baseri, H., & Shabgard, M. R. (2015). Investigation of near dry EDM compared with wet and dry EDM processes. Journal of Mechanical Science and Technology, 29, 2213–2218. https://doi.org/10.1007/s12206-015-0441-2.

    Article  Google Scholar 

  57. Goh, C. L., & Ho, S. F. (1993). Contact dermatitis from dielectric fluids in electrodischarge machining. Contact Dermatitis, 28, 134–418. https://doi.org/10.1111/j.1600-0536.1993.tb03372.x.

    Article  Google Scholar 

  58. Valaki, J. B., Rathod, P. P., & Khatri, B. C. (2014). Environmental impact, personnel health and operational safety aspects of electric discharge machining: A review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229, 1481–1491. https://doi.org/10.1177/0954405414543314.

    Article  Google Scholar 

  59. Jose, M., Sivapirakasam, S. P., & Surianarayanan, M. (2010). Analysis of aerosol emission and hazard evaluation of electrical discharge machining (EDM) process. Industrial Health, 48, 478–486. https://doi.org/10.2486/indhealth.MS1127.

    Article  Google Scholar 

  60. Sivapirakasam, S. P., Mathew, J., & Surianarayanan, M. (2011). Constituent analysis of aerosol generated from die sinking electrical discharge machining process. Process Safety and Environmental Protection, 89, 141–150. https://doi.org/10.1016/j.psep.2010.10.003.

    Article  Google Scholar 

  61. Maiyoh, G. K., Njoroge, R. W., & Tuei, V. C. (2015). Effects and mechanisms of kerosene use-related toxicity. Environmental Toxicology and Pharmacology, 40, 57–70. https://doi.org/10.1016/j.etap.2015.05.010.

    Article  Google Scholar 

  62. International Chemical Safety Card (ICSC) entry for kerosene (1998). ISCS 0663. International Programme on Chemical Safety.

  63. Mohri, N., Fukuzawa, Y., Tani, T., Saito, N., & Furutani, K. (1996). Assisting electrode method for machining insulating ceramics. CIRP Annals, 45(1), 201–204. https://doi.org/10.1016/S0007-8506(07)63047-9.

    Article  Google Scholar 

  64. Kansal, H. K., Singh, S., & Kumar, P. (2008). Numerical simulation of powder mixed electric discharge machining (PMEDM) using finite element method. Mathematical and Computer Modelling, 47, 1217–1237. https://doi.org/10.1016/j.mcm.2007.05.016.

    Article  MATH  Google Scholar 

  65. Macedo, F. T. B., Wiessner, M., Hollenstein, C., Esteves, P. M. B., & Wegener, K. (2016). Fundamental investigation of dry electrical discharge machining (DEDM) by optical emission spectroscopy and its numerical interpretation. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-016-9687-9.

    Google Scholar 

  66. Chung, D. K., & Chu, C. N. (2015). Effect of inductance in micro EDM using high frequency bipolar pulse generator. International Journal of Precision Engineering and Manufacturing Green Technology, 2, 299–303. https://doi.org/10.1007/s40684-015-0036-5.

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by Rochester Institute of Technology-Dubai (RIT-D), United Arab Emirates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Pervaiz.

Ethics declarations

Conflict of interest

No conflict of interest exists for all participating authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zia, M.K., Pervaiz, S., Anwar, S. et al. Reviewing Sustainability Interpretation of Electrical Discharge Machining Process using Triple Bottom Line Approach. Int. J. of Precis. Eng. and Manuf.-Green Tech. 6, 931–945 (2019). https://doi.org/10.1007/s40684-019-00043-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00043-2

Keywords

Navigation