Skip to main content

Advertisement

Log in

A review on sustainability, health, and safety issues of electrical discharge machining

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Electrical discharge machining (EDM) is a well-practiced non-traditional machining process in the manufacturing, aerospace, and biomedical instrumentation industry, used to machine hard metals, alloys, composites, and ceramics. But EDM has some demerits such as low material removal rate (MRR), high power consumption, and dependency on conventional fluids (kerosene and hydrocarbon oil as dielectric), which lowers its sustainability index. Besides these, toxic fumes, vapors, and aerosols are released during the process. Generation of toxic and non-biodegradable dielectric waste and its disposal is also a severe problem. The toxic gases adversely affect the environment and human beings. The risk of fire and health hazards to the operator is also a cause of concern. The present article deeply emphasizes the issue of the emergence of toxic fumes during machining and the use of some alternative dielectric mediums, which are the justified and potential substitutes of conventional EDM oils. This review article mainly focuses on the machining performance of different green EDM techniques, the environmental impact of EDM, and personnel health and operational safety. Various types of diseases caused by toxic gases are also reviewed. This review article is based on  299 articles published from 1981 to 2021. A detailed discussion on water-based dielectrics, powder-mixed EDM, vegetable oil-based EDM, dry and near-dry EDM is presented in the paper. Finally, the article winds up with research gaps and future scope and concluding remarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reproduced with permission from Suthangathan et al. [90])

Fig. 5

Reproduced with permission from Suthangathan et al. [90])

Fig. 6
Fig. 7

Reproduced with permission from Kao et al. [105])

Fig. 8

Reproduced with permission from Li et al. [111])

Fig. 9

Reproduced with permission from Modica et al. [119])

Fig. 10

Reproduced with permission from Sahu et al. [126])

Fig. 11

Reproduced with permission from Yan et al. [142])

Fig. 12

Reproduced with permission from Mohanty et al. [48])

Fig. 13

Reproduced with permission from Mohanty et al. [48])

Fig. 14

Reproduced with permission from Das et al. [72])

Fig. 15
Fig. 16

Reproduced with permission from Liqing and Yingjie [208])

Fig. 17

Reproduced with permission from Liqing and Yingjie [208])

Fig. 18
Fig. 19

Reproduced with permission from Kao et al. [105])

Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BUVO:

Blended used vegetable oil

CWD:

Commercial water-based dielectrics

DEDM:

Dry electrical discharge machining

DEMATEL:

Decision-making trial and evaluation laboratory

ECM:

Electro chemical machining

EDM:

Electrical discharge machining

EDX:

Energy-dispersive X-ray analysis

EWR:

Electrode wear ratio

GRA:

Grey relational analysis

HAZ:

Heat-affected zone

MFADEDM:

Magnetic field-assisted dry electrical discharge machining

µEDM:

Micro-electrical discharge machining

MQL:

Minimum quantity lubrication

MRR:

Material removal rate

NDEDM:

Near-dry electrical discharge machining

OCW:

Organic compound mixed water

PAH:

Polycyclic aromatic hydrocarbons

PAS:

Portable spectrometer aerosol

PMEDM:

Powder-mixed electrical discharge machining

REWR:

Relative electrode wear ratio

SF:

Surface finish

SR:

Surface roughness

USDEDM:

Ultrasonic-assisted dry electrical discharge machining

WEDM:

Wire electrical discharge machine

WMFADEDM:

Without magnetic field-assisted dry electrical discharge machining

WPMEDM:

Water-based powder-mixed EDM

WVO:

Waste vegetable oil

References

  1. Gupta K (2020) A review on green machining techniques. Procedia Manuf 51:1730–1736. https://doi.org/10.1016/J.PROMFG.2020.10.241

    Article  Google Scholar 

  2. Abu Zeid OA (1997) On the effect of electrodischarge machining parameters on the fatigue life of AISI D6 tool steel. J Mater Process Technol 68:27–32

    Article  Google Scholar 

  3. Pandit SM, Rajurkar KP, Shaw MC (1981) Analysis of electro discharge machining of cemented carbides. CIRP Ann 30:111–116. https://doi.org/10.1016/S0007-8506(07)60906-8

    Article  Google Scholar 

  4. Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43:1287–1300. https://doi.org/10.1016/S0890-6955(03)00162-7

    Article  Google Scholar 

  5. Davim JP (2013) Nontraditional machining processes: research advances. Springer, London

    Book  Google Scholar 

  6. Kumar Baroi B, Kar S, Kumar Patowari P (2018) Electric discharge machining of titanium grade 2 alloy and its parametric study In: Materials Today: Proceedings Elsevier Ltd pp 5004–5011

  7. Baroi BK, Debnath T, Jagadish PPK (2020) Machinability assessment of titanium grade 2 alloy using deionized water in EDM. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.02.482

    Article  Google Scholar 

  8. Muthuramalingam T, Mohan B (2015) A review on influence of electrical process parameters in EDM process. Arch Civ Mech Eng 15:87–94. https://doi.org/10.1016/j.acme.2014.02.009

    Article  Google Scholar 

  9. El-Hofy HA-G (2013) Fundamentals of machining processes: conventional and nonconventional processes. CRC Press, USA, pp 1–9

    Book  Google Scholar 

  10. Leão FN, Pashby IR (2004) A review on the use of environmentally-friendly dielectric fluids in electrical discharge machining. J Mater Process Technol 149:341–346. https://doi.org/10.1016/j.jmatprotec.2003.10.043

    Article  Google Scholar 

  11. Sivapirakasam SP, Mathew J, Surianarayanan M (2011) Effect of process parameters on the breathing zone concentration of gaseous hydrocarbons-a study of an electrical discharge machining process. Hum Ecol Risk Assess 17:1247–1262. https://doi.org/10.1080/10807039.2011.618390

    Article  Google Scholar 

  12. Goh CL, Ho SF (1993) Contact dermatitis from dielectric fluids in electrodischarge machining. Contact Dermatitis 28:134–138. https://doi.org/10.1111/j.1600-0536.1993.tb03372.x

    Article  Google Scholar 

  13. Jain S, Parashar V (2021) Critical review on the impact of EDM process on biomedical materials. Mater Manuf Process. https://doi.org/10.1080/10426914.2021.1942907

    Article  Google Scholar 

  14. Asgar ME, Singholi AKS (2021) Study of the effect of dielectric on performance measure in EDM In: Advances in industrial and production engineering Springer, Singapore, pp 843–850

  15. Kiran TH, Gupta N (2021) Sustainability concerns of non-conventional machining processes—an exhaustive review. Recent Adv Smart Manuf Mater. https://doi.org/10.1007/978-981-16-3033-0_25

    Article  Google Scholar 

  16. Singh R, Pratap Singh R, Trehan R (2021) Sustainable engineering approaches used in electrical discharge machining processes: a review. Sustainable environment and infrastructure. Springer, Cham, pp 41–50

    Chapter  Google Scholar 

  17. Patowari PK, Mishra UK, Saha P, Mishra PK (2010) Surface modification of C40 steel using WC-Cu P/M green compact electrodes in EDM. Int J Manuf Technol Manag 21:83–98. https://doi.org/10.1504/IJMTM.2010.034288

    Article  Google Scholar 

  18. Patowari PK, Saha P, Mishra PK (2011) Taguchi analysis of surface modification technique using W-Cu powder metallurgy sintered tools in EDM and characterization of the deposited layer. Int J Adv Manuf Technol 54:593–604. https://doi.org/10.1007/s00170-010-2966-y

    Article  Google Scholar 

  19. Eswara Krishna M, Patowari PK (2013) Parametric optimisation of electric discharge coating process with powder metallurgy tools using Taguchi analysis. Surf Eng 29:703–711. https://doi.org/10.1179/1743294413Y.0000000207

    Article  Google Scholar 

  20. Moses MD, Jahan MP (2015) Micro-EDM machinability of difficult-to-cut Ti-6Al-4V against soft brass. Int J Adv Manuf Technol 81:1345–1361. https://doi.org/10.1007/s00170-015-7306-9

    Article  Google Scholar 

  21. Rahang M, Patowari PK (2015) Application of masking technique in EDM for generation of rectangular shaped pattern. Int J Precis Technol 5:140. https://doi.org/10.1504/ijptech.2015.070639

    Article  Google Scholar 

  22. Puertas I, Luis CJ (2003) A study on the machining parameters optimisation of electrical discharge machining. J Mater Process Technol 143–144:521–526

    Article  Google Scholar 

  23. Krishna ME, Patowari PK (2014) Parametric study of electric discharge coating using powder metallurgical green compact electrodes. Mater Manuf Process 29:1131–1138. https://doi.org/10.1080/10426914.2014.930887

    Article  Google Scholar 

  24. Rahang M, Patowari PK (2016) Parametric optimization for selective surface modification in EDM using Taguchi analysis. Mater Manuf Process 31:422–431. https://doi.org/10.1080/10426914.2015.1037921

    Article  Google Scholar 

  25. Gülcan O, Uslan İ, Usta Y, Çoğun C (2016) Performance and surface alloying characteristics of Cu–Cr and Cu–Mo powder metal tool electrodes in electrical discharge machining. Mach Sci Technol 20:523–546. https://doi.org/10.1080/10910344.2016.1191031

    Article  Google Scholar 

  26. Mussada EK, Patowari PK (2015) Investigation of EDC parameters using W and Cu powder metallurgical compact electrodes. Int J Mach Mach Mater 17:65–78. https://doi.org/10.1504/IJMMM.2015.069230

    Article  Google Scholar 

  27. Patowari PK, Saha P, Mishra PK (2015) An experimental investigation of surface modification of C-40 steel using W-Cu powder metallurgy sintered compact tools in EDM. Int J Adv Manuf Technol 80:343–360. https://doi.org/10.1007/s00170-015-7004-7

    Article  Google Scholar 

  28. Dang X-P (2018) Constrained multi-objective optimization of EDM process parameters using kriging model and particle swarm algorithm. Mater Manuf Process 33:397–404. https://doi.org/10.1080/10426914.2017.1292037

    Article  Google Scholar 

  29. Mussada EK, Patowari PK (2015) Characterisation of layer deposited by electric discharge coating process. Surf Eng 31:796–802. https://doi.org/10.1179/1743294415Y.0000000048

    Article  Google Scholar 

  30. Rahang M, Patowari PK (2019) Pattern generation by selective area deposition of material in EDM. Mater Manuf Process 34:1847–1854. https://doi.org/10.1080/10426914.2019.1669798

    Article  Google Scholar 

  31. Garg RK, Singh KK, Sachdeva A et al (2010) Review of research work in sinking EDM and WEDM on metal matrix composite materials. Int J Adv Manuf Technol 50:611–624. https://doi.org/10.1007/s00170-010-2534-5

    Article  Google Scholar 

  32. Patowari PK, Saha P, Mishra PK (2010) Artificial neural network model in surface modification by EDM using tungsten-copper powder metallurgy sintered electrodes. Int J Adv Manuf Technol 51:627–638. https://doi.org/10.1007/s00170-010-2653-z

    Article  Google Scholar 

  33. Pervaiz S, Anwar S, Qureshi I, Ahmed N (2019) recent advances in the machining of titanium alloys using minimum quantity lubrication (MQL) based techniques. Int J Precis Eng Manuf Green Technol 6:133–145

    Article  Google Scholar 

  34. Patowari PK, Mishra UK, Saha P, Mishra PK (2011) Surface integrity of C-40 steel processed with WC-Cu powder metallurgy green compact tools in EDM. Mater Manuf Process 26:668–676. https://doi.org/10.1080/10426914.2010.512652

    Article  Google Scholar 

  35. Gamage JR, DeSilva AKM, Chantzis D, Antar M (2017) Sustainable machining: process energy optimisation of wire electrodischarge machining of Inconel and titanium superalloys. J Clean Prod 164:642–651. https://doi.org/10.1016/j.jclepro.2017.06.186

    Article  Google Scholar 

  36. Jagadish J, Ray A (2014) A fuzzy multi-criteria decision-making model for green electrical discharge machining. Adv Intell Syst Comput 335:33–43. https://doi.org/10.1007/978-81-322-2217-0_4

    Article  Google Scholar 

  37. Bhowmik S, Gupta K (2019) Modeling and optimization of electrical discharge machining. In: Modelling and optimization of advanced manufacturing processes. Springer, Cham, pp 15–28. https://doi.org/10.1007/978-3-030-00036-3_2

    Chapter  Google Scholar 

  38. Jagadish, Ray A (2014) Optimization of green electrical discharge machining using an integrated approach In: IEEE International conference on industrial engineering and engineering management IEEE Computer Society pp 943–947

  39. Jagadish J, Bhowmik S, Ray A, Rajakumaran M (2018) Optimization of process parameters using fuzzy-grey relational analysis (F-GRA) for green EDM In: AIP Conference Proceedings American Institute of Physics Inc p 020011

  40. Mussada EK, Patowari PK (2017) Post processing of the layer deposited by electric discharge coating. Mater Manuf Process 32:442–449. https://doi.org/10.1080/10426914.2016.1198021

    Article  Google Scholar 

  41. Grigoriev SN, Hamdy K, Volosova MA et al (2021) Electrical discharge machining of oxide and nitride ceramics: a review. Mater Des 209:109965. https://doi.org/10.1016/J.MATDES.2021.109965

    Article  Google Scholar 

  42. Pachaury Y, Tandon P (2017) An overview of electric discharge machining of ceramics and ceramic based composites. J Manuf Process 25:369–390

    Article  Google Scholar 

  43. Debnath T, Patowari PK (2019) Fabrication of an array of micro-fins using Wire-EDM and its parametric analysis. Mater Manuf Process 34:580–589. https://doi.org/10.1080/10426914.2019.1566959

    Article  Google Scholar 

  44. Singh AK, Patowari PK, Patowari PK, Deshpande NV (2014) Micro-hole drilling on thin sheet metals by micro-electro discharge machining. Artic J Manuf Technol Res 5:3–4

    Google Scholar 

  45. Kar S, Patowari PK (2019) Experimental investigation of machinability and surface characteristics in microelectrical discharge milling of titanium, stainless steel and copper. Arab J Sci Eng 44:7843–7858. https://doi.org/10.1007/s13369-019-03918-3

    Article  Google Scholar 

  46. Singh AK, Patowari PK, Chandrasekaran M (2020) Experimental study on drilling micro-hole through micro-EDM and optimization of multiple performance characteristics. J Braz Soc Mech Sci Eng 42:506. https://doi.org/10.1007/s40430-020-02595-w

    Article  Google Scholar 

  47. Kumar S, Batra U (2012) Surface modification of die steel materials by EDM method using tungsten powder-mixed dielectric. J Manuf Process 14:35–40. https://doi.org/10.1016/j.jmapro.2011.09.002

    Article  Google Scholar 

  48. Mohanty S, Kumar V, Kumar Das A, Dixit AR (2019) Surface modification of Ti-alloy by micro-electrical discharge process using tungsten disulphide powder suspension. J Manuf Process 37:28–41. https://doi.org/10.1016/j.jmapro.2018.11.007

    Article  Google Scholar 

  49. Sarmah A, Kar S, Patowari PK (2020) Surface modification of aluminum with green compact powder metallurgy Inconel-aluminum tool in EDM. Mater Manuf Process 35:1104–1112. https://doi.org/10.1080/10426914.2020.1765253

    Article  Google Scholar 

  50. Rahang M, Patowari PK (2020) Selective area deposition for pattern generation in EDM using masking technique. Surf Rev Lett. https://doi.org/10.1142/S0218625X19502184

    Article  Google Scholar 

  51. Mussada EK, Patowari PK (2020) Development of intelligent system for predicting MTR in EDC process using powder metallurgical tools. Grey Syst Theory Appl 10:321–337. https://doi.org/10.1108/gs-01-2020-0006

    Article  Google Scholar 

  52. Deka S, Kar S, Patowari PK (2020) Machinability of silicon and german silver in micro electrical discharge machining: a comparative study. SILICON. https://doi.org/10.1007/s12633-020-00496-0

    Article  Google Scholar 

  53. Liu Y, Cai H, Li H (2015) Fabrication of micro spherical electrode by one pulse EDM and their application in electrochemical micromachining. J Manuf Process 17:162–170. https://doi.org/10.1016/j.jmapro.2014.09.003

    Article  Google Scholar 

  54. Singh AK, Patowari PK, Deshpande NV (2016) Experimental analysis of reverse micro-EDM for machining microtool. Mater Manuf Process 31:530–540. https://doi.org/10.1080/10426914.2015.1070426

    Article  Google Scholar 

  55. Narasimhan J, Yu Z, Rajurkar KP (2005) Tool wear compensation and path generation in micro and macro EDM. J Manuf Process 7:75–82. https://doi.org/10.1016/S1526-6125(05)70084-0

    Article  Google Scholar 

  56. Kar S, Patowari PK (2018) Electrode wear phenomenon and its compensation in micro electrical discharge milling: a review. Mater Manuf Process 33:1491–1517

    Article  Google Scholar 

  57. Roy T, Datta D, Balasubramaniam R (2018) Numerical modelling, simulation and fabrication of 3-D hemi-spherical convex micro features using reverse micro EDM. J Manuf Process 32:344–356. https://doi.org/10.1016/j.jmapro.2018.02.018

    Article  Google Scholar 

  58. Singh AK, Patowari PK, Deshpande NV (2017) Effect of tool wear on microrods fabrication using reverse μEDM. Mater Manuf Process 32:286–293. https://doi.org/10.1080/10426914.2016.1198015

    Article  Google Scholar 

  59. Singh AK, Patowari PK, Deshpande NV (2019) Analysis of micro-rods machined using reverse micro-EDM. J Braz Soc Mech Sci Eng 41:15. https://doi.org/10.1007/s40430-018-1519-4

    Article  Google Scholar 

  60. Marrocco V, Modica F, Fassi I (2019) Analysis of discharge pulses in micro-EDM milling of Si3N4-TiN composite workpiece by means of power spectral density (PSD). J Manuf Process 43:112–118. https://doi.org/10.1016/j.jmapro.2019.05.017

    Article  Google Scholar 

  61. Kuriakose S, Patowari PK, Bhatt J (2020) Effect of micro-EDM machining parameters on the accuracy of micro hole drilling in Zr-based metallic glass. Eng Res Express 2:015001. https://doi.org/10.1088/2631-8695/ab5c72

    Article  Google Scholar 

  62. Kar S, Patowari PK (2019) Effect of non-electrical parameters in fabrication of micro rod using BEDG. Mater Manuf Process 34:1262–1273. https://doi.org/10.1080/10426914.2019.1643475

    Article  Google Scholar 

  63. Wang Y, Chen X, Wang Z, Dong S (2018) Fabrication of micro gear with intact tooth profile by micro wire electrical discharge machining. J Mater Process Technol 252:137–147. https://doi.org/10.1016/j.jmatprotec.2017.09.002

    Article  Google Scholar 

  64. Debnath T, Patowari PK (2019) Concept development for fabricating threaded micro-pin using wire-EDM. J Braz Soc Mech Sci Eng 41:402. https://doi.org/10.1007/s40430-019-1916-3

    Article  Google Scholar 

  65. Singh R, Singh RP, Trehan R (2021) State of the art in processing of shape memory alloys with electrical discharge machining: a review. Proc Inst Mech Eng Part B J Eng Manuf 235:333–366. https://doi.org/10.1177/0954405420958771

    Article  Google Scholar 

  66. Li W, Kara S (2015) Characterising energy efficiency of electrical discharge machining (EDM) processes In: Procedia CIRP Elsevier BV pp 263–268

  67. Levy GN (1993) Environmentally friendly and high-capacity dielectric regeneration for wire EDM. CIRP Ann 42:227–230. https://doi.org/10.1016/S0007-8506(07)62431-7

    Article  Google Scholar 

  68. Wansheng Z, Yonghui H, Liming G, LJ (1995) A measuring and evaluating system of the utilization ratio of electrical energy in EDM In: Proceedings of the 11th International Symposium on Electromachining (ISEM XI), Lausanne, Switzerland. pp 253–259

  69. Yeo SH, Tan HC, New AK (1998) Assessment of waste streams in electric-discharge machining for environmental impact analysis. Proc Inst Mech Eng Part B J Eng Manuf 212:393–401. https://doi.org/10.1243/0954405981515996

    Article  Google Scholar 

  70. Dwivedi AP, Choudhury SK (2019) A preliminary study of the air pollutants discharge during the electric discharge machining process. In: Green buildings and sustainable engineering. Springer, Singapore, pp 467–475. https://doi.org/10.1007/978-981-13-1202-1_40

    Chapter  Google Scholar 

  71. Pellegrini G, Ravasio C (2020) A sustainability index for the micro-EDM drilling process. J Clean Prod 247:119136. https://doi.org/10.1016/j.jclepro.2019.119136

    Article  Google Scholar 

  72. Das S, Paul S, Doloi B (2019) An experimental and computational study on the feasibility of bio-dielectrics for sustainable electrical discharge machining. J Manuf Process 41:284–296. https://doi.org/10.1016/j.jmapro.2019.04.005

    Article  Google Scholar 

  73. Bommeli B (1983) Study of the harmful emanations resulting from the machining by electro-erosion Proc Seventh Int Symp Electromachining 469 – 478

  74. Evertz S, Dott W, Eisentraeger A (2006) Electrical discharge machining: occupational hygienic characterization using emission-based monitoring. Int J Hyg Environ Health 209:423–434. https://doi.org/10.1016/J.IJHEH.2006.04.005

    Article  Google Scholar 

  75. Evertz S, Eisentraeger A, Dotti W, Klocke F, A Karden A, GA (2001) Environmental and industrial hygiene in connection with electrical discharge machining at high discharge energies Proc 13th Int Symp Electromac I:193–210

  76. Gupta K, Gupta MK (2019) Developments in nonconventional machining for sustainable production: a state-of-the-art review. Proc Inst Mech Eng Part C J Mech Eng Sci 233:4213–4232. https://doi.org/10.1177/0954406218811982

    Article  Google Scholar 

  77. Lee H-T, Song J-H, Min S-H et al (2019) Research trends in sustainable manufacturing: a review and future perspective based on research databases. Int J Precis Eng Manuf Technol 6:809–819. https://doi.org/10.1007/s40684-019-00113-5

    Article  Google Scholar 

  78. Salem A, Hegab H, Kishawy HA (2021) An integrated approach for sustainable machining processes: assessment, performance analysis, and optimization. Sustain Prod Consum 25:450–470. https://doi.org/10.1016/J.SPC.2020.11.021

    Article  Google Scholar 

  79. Gouda D, Panda A, Nanda BK et al (2021) Recently evaluated Electrical Discharge Machining (EDM) process performances: a research perspective. Mater Today Proc 44:2087–2092. https://doi.org/10.1016/J.MATPR.2020.12.180

    Article  Google Scholar 

  80. Das PP, Chakraborty S (2021) Application of grey-PROMETHEE method for parametric optimization of a green powder mixed EDM process. Process Integr Optim Sustain 53(5):645–661. https://doi.org/10.1007/S41660-021-00173-8

    Article  Google Scholar 

  81. Sheng P, Srinivasan M, Kobayashi S (1995) Multi-objective process planning in environmentally conscious manufacturing: a feature-based approach. CIRP Ann 44:433–437. https://doi.org/10.1016/S0007-8506(07)62358-0

    Article  Google Scholar 

  82. Tan X, Liu F, Cao H, Zhang H (2002) A decision-making framework model of cutting fluid selection for green manufacturing and a case study. J Mater Process Technol 129:467–470. https://doi.org/10.1016/S0924-0136(02)00614-3

    Article  Google Scholar 

  83. Ramani V, Cassidenti ML (1985) Inert-gas electricaldischarge machining NASA Tech Br No NPO-15660 15660

  84. Kunieda M, Yoshida M (1997) Electrical discharge machining in gas. CIRP Ann Manuf Technol. https://doi.org/10.1016/s0007-8506(07)60794-x

    Article  Google Scholar 

  85. Yeo SH, New AK (1999) Method for green process planning in electric discharge machining. Int J Adv Manuf Technol 15:287–291. https://doi.org/10.1007/s001700050068

    Article  Google Scholar 

  86. Skrabalak G, Kozak J (2010) Study on dry electrical discharge machining WCE 2010 - World Congr Eng 2010 3:2070–2075

  87. Mathew J, Sivapirakasam SP, Surianarayanan M (2010) Evaluation of occupational exposure to aerosol emitted from die sinking electrical discharge machining process. Int J Environ Heal 4:1. https://doi.org/10.1504/IJENVH.2010.033031

    Article  Google Scholar 

  88. Kellens K, Renaldi DW, Duflou JR (2011) Preliminary environmental assessment of electrical discharge machining. Glocalized solutions for sustainability in manufacturing. Springer, Berlin, pp 377–382

    Chapter  Google Scholar 

  89. Abbas NM, Yusoff N, Mahmod@Wahab R (2012) Electrical discharge machining (EDM): practices in Malaysian industries and possible change towards green manufacturing Procedia Eng 41:1684–1688 https://doi.org/10.1016/j.proeng.2012.07.368

  90. Suthangathan Paramashivan S, Mathew J, Mahadevan S (2012) Mathematical modeling of aerosol emission from die sinking electrical discharge machining process. Appl Math Model 36:1493–1503. https://doi.org/10.1016/j.apm.2011.09.034

    Article  Google Scholar 

  91. Tönshoff HK, Egger R, Klocke F (1996) Environmental and safety aspects of electrophysical and electrochemical processes. CIRP Ann 45:553–568. https://doi.org/10.1016/S0007-8506(07)60510-1

    Article  Google Scholar 

  92. Thiyagarajan S, Sivapirakasam SP, Mathew J et al (2014) Influence of workpiece materials on aerosol emission from die sinking electrical discharge machining process. Process Saf Environ Prot 92:739–749. https://doi.org/10.1016/j.psep.2014.01.001

    Article  Google Scholar 

  93. Jagadish RA (2015) Multi-objective optimization of green EDM: an integrated theory. J Inst Eng Ser C 96:41–47. https://doi.org/10.1007/s40032-014-0142-0

    Article  Google Scholar 

  94. Jagadish RA (2016) Optimization of process parameters of green electrical discharge machining using principal component analysis (PCA). Int J Adv Manuf Technol 87:1299–1311. https://doi.org/10.1007/s00170-014-6372-8

    Article  Google Scholar 

  95. Dhakar K, Chaudhary K, Dvivedi A, Bembalge O (2019) An environment-friendly and sustainable machining method: near-dry EDM. Mater Manuf Process 34:1307–1315. https://doi.org/10.1080/10426914.2019.1643471

    Article  Google Scholar 

  96. Zhang Z, Yu H, Zhang Y et al (2018) Analysis and optimization of process energy consumption and environmental impact in electrical discharge machining of titanium superalloys. J Clean Prod 198:833–846. https://doi.org/10.1016/j.jclepro.2018.07.053

    Article  Google Scholar 

  97. Wang X, Chen Le, Dan B, Wang F (2018) Evaluation of EDM process for green manufacturing. Int J Adv Manuf Technol 94:633–641. https://doi.org/10.1007/s00170-017-0892-y

    Article  Google Scholar 

  98. Dwivedi AP, Choudhury SK (2019) A brief study of the particulate matter emissions during the EDM process. In: Green buildings and sustainable engineering. Springer, Singapore, pp 457–465. https://doi.org/10.1007/978-981-13-1202-1_39

    Chapter  Google Scholar 

  99. Das PP, Chakraborty S (2020) Parametric analysis of a green electrical discharge machining process using DEMATEL and SIR methods. Opsearch 57:513–540. https://doi.org/10.1007/s12597-019-00410-2

    Article  MATH  Google Scholar 

  100. Basha SM, Dave HK, Patel HV (2021) Experimental investigation on the quality of electric discharge machined Ti-6Al-4V using bio-oil and biodiesel. Mater Today Proc 38:2249–2255. https://doi.org/10.1016/J.MATPR.2020.06.314

    Article  Google Scholar 

  101. Ishfaq K, Asad M, Anwar S et al (2020) A comprehensive analysis of the effect of graphene-based dielectric for sustainable electric discharge machining of Ti-6Al-4V. Materials (Basel) 14:23. https://doi.org/10.3390/ma14010023

    Article  Google Scholar 

  102. Zhang Z, Zhang Y, Lin L et al (2021) Study on productivity and aerosol emissions of magnetic field-assisted EDM process of SiCp/Al composite with high volume fractions. J Clean Prod 292:126018. https://doi.org/10.1016/J.JCLEPRO.2021.126018

    Article  Google Scholar 

  103. Ming W, Shen F, Zhang G et al (2021) Green machining: a framework for optimization of cutting parameters to minimize energy consumption and exhaust emissions during electrical discharge machining of Al 6061 and SKD 11. J Clean Prod 285:124889. https://doi.org/10.1016/J.JCLEPRO.2020.124889

    Article  Google Scholar 

  104. Kumar R, Singh S, Bilga PS et al (2021) Revealing the benefits of entropy weights method for multi-objective optimization in machining operations: a critical review. J Mater Res Technol 10:1471–1492. https://doi.org/10.1016/J.JMRT.2020.12.114

    Article  Google Scholar 

  105. Kao CC, Tao J, Shih AJ (2007) Near dry electrical discharge machining. Int J Mach Tools Manuf 47:2273–2281. https://doi.org/10.1016/j.ijmachtools.2007.06.001

    Article  Google Scholar 

  106. Ekmekci B (2007) Residual stresses and white layer in electric discharge machining (EDM). Appl Surf Sci 253:9234–9240. https://doi.org/10.1016/j.apsusc.2007.05.078

    Article  Google Scholar 

  107. Zhang Y, Liu Y, Ji R, Cai B (2011) Study of the recast layer of a surface machined by sinking electrical discharge machining using water-in-oil emulsion as dielectric. Appl Surf Sci 257:5989–5997. https://doi.org/10.1016/j.apsusc.2011.01.083

    Article  Google Scholar 

  108. Kadirvel A, Hariharan P, Gowri S (2012) Review to EDM by using water and powder-mixed dielectric fluid. Int J Mechatron Manuf Syst 5:361. https://doi.org/10.1504/IJMMS.2012.049968

    Article  Google Scholar 

  109. Yildiz Y, Sundaram MM, Rajurkar KP (2012) Statistical analysis and optimization study on the machinability of beryllium–copper alloy in electro discharge machining. Proc Inst Mech Eng Part B J Eng Manuf 226:1847–1861. https://doi.org/10.1177/0954405412457610

    Article  Google Scholar 

  110. Natarajan N, Arunachalam RM, Thanigaivelan R (2013) Experimental study and analysis of micro holes machining in EDM of SS 304. Int J Mach Mach Mater 13:1–16. https://doi.org/10.1504/IJMMM.2013.051905

    Article  Google Scholar 

  111. Li C, Xu X, Li Y et al (2019) Effects of dielectric fluids on surface integrity for the recast layer in high speed EDM drilling of nickel alloy. J Alloys Compd 783:95–102. https://doi.org/10.1016/j.jallcom.2018.12.283

    Article  Google Scholar 

  112. Afiq Rashid M, Rahman M, Senthil Kumar A (2016) A study on compound micromachining using laser and Electric Discharge Machining (EDM). Adv Mater Process Technol 2:258–265. https://doi.org/10.1080/2374068X.2016.1164531

    Article  Google Scholar 

  113. Zhao Y, Kunieda M, Abe K (2016) Comparison on foil EDM characteristics of single crystal SiC between in deionized water and in EDM oil. Int J Adv Manuf Technol 86:2905–2912. https://doi.org/10.1007/s00170-016-8412-z

    Article  Google Scholar 

  114. Sheikh-Ahmad JY, Shinde SR (2016) Machinability of carbon/epoxy composites by electrical discharge machining. Int J Mach Mach Mater 18:3–17. https://doi.org/10.1504/IJMMM.2016.075452

    Article  Google Scholar 

  115. Zhang S, Zhang W, Liu Y, Ma F, Su C, Sha Z (2017) Study on the gap flow simulation in EDM small hole machining with Ti alloy. Adv Mater Sci Eng. https://doi.org/10.1155/2017/8408793

    Article  Google Scholar 

  116. Srinivasan VP, Palani PK, Selvarajan L (2018) Experimental investigation on electrical discharge machining of ceramic composites (Si3N4-TiN) using RSM. Int J Comput Mater Sci Surf Eng 7:104–115. https://doi.org/10.1504/IJCMSSE.2018.092541

    Article  Google Scholar 

  117. Wang W, Liu Y, Zhang W, Ma F, Yang D, Zhang S (2019) Research on shape change of multimaterial electrode for EDM. Adv Mater Sci Eng. https://doi.org/10.1155/2019/9159835

    Article  Google Scholar 

  118. Liu Y, Wang W, Zhang W, Ma F, Yang D, Sha Z, Zhang S (2019) Experimental study on electrode wear of diamond-nickel coated electrode in EDM small hole machining. Adv Mater Sci Eng. https://doi.org/10.1155/2019/7181237

    Article  Google Scholar 

  119. Modica F, Marrocco V, Valori M, et al (2018) Study about the influence of powder mixed water based fluid on micro-EDM process In: Procedia CIRP Elsevier pp 789–795

  120. Zhang S, Zhang W, Wang P, Liu Y, Ma F, Yang D, Sha Z (2019) Simulation of material removal process in EDM with composite tools. Adv Mater Sci Eng. https://doi.org/10.1155/2019/1321780

    Article  Google Scholar 

  121. Perumal A, Azhagurajan A, Baskaran S, Prithivirajan R, PN (2019) Statistical evaluation and performance analysis of electrical discharge machining (EDM) characteristics of hard Ti-6Al-2Sn-4Zr-2Mo alloy Mater Res Express 6:056552 https://doi.org/10.1088/2053-1591

  122. Rahimi H, Masoudi S, Tolouei-Rad M (2021) Experimental investigation of the effect of EDM parameters and dielectric type on the surface integrity and topography. Int J Adv Manuf Technol 2021:1–12. https://doi.org/10.1007/S00170-021-08040-Z

    Article  Google Scholar 

  123. Jeswani ML (1981) Electrical discharge machining in distilled water. Wear 72:81–88. https://doi.org/10.1016/0043-1648(81)90285-4

    Article  Google Scholar 

  124. Erden A, Temel D (1982) Investigation on the use of water as a dielectric liquid in EDM In: Proceedings of the twenty-second international machine tool design and research conference Macmillan Education UK, London, pp 437–440

  125. Chen SL, Yan BH, Huang FY (1999) Influence of kerosene and distilled water as dielectrics on the electric discharge machining characteristics of Ti–6A1–4V. J Mater Process Technol 87:107–111. https://doi.org/10.1016/S0924-0136(98)00340-9

    Article  Google Scholar 

  126. Sahu SK, Jadam T, Datta S (2019) Performance of dielectric media (conventional EDM oil and distilled water) during machining of Inconel 825 super alloy In: Materials Today: Proceedings Elsevier pp 2679–2687

  127. Bai CY, Koo CH (2006) Effects of kerosene or distilled water as dielectric on electrical discharge alloying of superalloy Haynes 230 with Al-Mo composite electrode. Surf Coat Technol 200:4127–4135. https://doi.org/10.1016/j.surfcoat.2005.03.022

    Article  Google Scholar 

  128. Lin C-T, Chow H-M, Yang L-D, Chen Y-F (2007) Feasibility study of micro-slit EDM machining using pure water. Int J Adv Manuf Technol 34:104–110. https://doi.org/10.1007/s00170-006-0570-y

    Article  Google Scholar 

  129. Hsieh SF, Lin MH, Chen SL et al (2016) Surface modification and machining of TiNi/TiNb-based alloys by electrical discharge machining. Int J Adv Manuf Technol 86:1475–1485. https://doi.org/10.1007/s00170-015-8257-x

    Article  Google Scholar 

  130. Kagaya K, Oishi Y, Yada K (1986) Micro-electrodischarge machining using water as a working fluid-I: micro-hole drilling. Precis Eng 8:157–162. https://doi.org/10.1016/0141-6359(86)90034-6

    Article  Google Scholar 

  131. Kagaya K, Oishi Y, Yada K (1990) Micro electro-discharge machining using water as a working fluid 2: narrow slit fabrication. Precis Eng 12:213–217. https://doi.org/10.1016/0141-6359(90)90063-5

    Article  Google Scholar 

  132. Medellin HI, de Lange DF, Morales J, Flores A (2009) Experimental study on electrodischarge machining in water of D2 tool steel using two different electrode materials. Proc Inst Mech Eng Part B J Eng Manuf 223:1423–1430. https://doi.org/10.1243/09544054JEM1573

    Article  Google Scholar 

  133. Tang L, Du YT (2014) Experimental study on green electrical discharge machining in tap water of Ti–6Al–4V and parameters optimization. Int J Adv Manuf Technol 70:469–475. https://doi.org/10.1007/s00170-013-5274-5

    Article  Google Scholar 

  134. Tang L, Du YT (2014) Multi-objective optimization of green electrical discharge machining Ti–6Al–4V in tap water via grey-Taguchi method. Mater Manuf Process 29:507–513. https://doi.org/10.1080/10426914.2013.840913

    Article  Google Scholar 

  135. Selvarajan L, Sathiya Narayanan C, Jeyapaul R (2015) Optimization of EDM hole drilling parameters in machining of MoSi 2 - SiC intermetallic/composites for improving geometrical tolerances. J Adv Manuf Syst 14:259–272. https://doi.org/10.1142/S0219686715500171

    Article  Google Scholar 

  136. Muthuramalingam T (2019) Effect of diluted dielectric medium on spark energy in green EDM process using TGRA approach. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.117894

    Article  Google Scholar 

  137. Debnath T, Baroi BK, Jagadish PPK (2020) Machinability study of 430 stainless steel using tap water in EDM. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.02.475

    Article  Google Scholar 

  138. König W, Jörres L (1987) Aqueous solutions of organic compounds as dielectrics for EDM sinking. CIRP Ann 36:105–109. https://doi.org/10.1016/S0007-8506(07)62564-5

    Article  Google Scholar 

  139. König W, Klocke F, MS (1995) EDM—sinking using water-based dielectrics and electropolishing—a new manufacturing sequence in tool-making In: Proceedings of the 11th International Symposium on Electromachining pp 225– 234

  140. Yan BH, Chung Tsai H, Yuan Huang F (2005) The effect in EDM of a dielectric of a urea solution in water on modifying the surface of titanium. Int J Mach Tools Manuf 45:194–200. https://doi.org/10.1016/j.ijmachtools.2004.07.006

    Article  Google Scholar 

  141. Wang F, Liu Y, Shen Y et al (2013) Machining performance of inconel 718 using high current density electrical discharge milling. Mater Manuf Process 28:1147–1152. https://doi.org/10.1080/10426914.2013.822985

    Article  Google Scholar 

  142. Sales WF, Oliveira ARF, Raslan AA (2016) Titanium perovskite (CaTiO3) formation in Ti6Al4V alloy using the electrical discharge machining process for biomedical applications. Surf Coat Technol 307:1011–1015. https://doi.org/10.1016/j.surfcoat.2016.10.028

    Article  Google Scholar 

  143. Wang X, Liu Z, Xue R et al (2014) Research on the influence of dielectric characteristics on the EDM of titanium alloy. Int J Adv Manuf Technol 72:979–987. https://doi.org/10.1007/s00170-014-5716-8

    Article  Google Scholar 

  144. Mujumdar SS, Curreli D, Kapoor SG (2016) Effect of dielectric electrical conductivity on the characteristics of micro electro-discharge machining plasma and material removal. J Micro Nano-Manuf. https://doi.org/10.1115/1.4033344

    Article  Google Scholar 

  145. Guo C, Di S, Wei D, Chengbo Guo SD, DW (2016) Study of electrical discharge machining performance in water-based working fluid Mater Manuf Process 31:1865–1871

  146. Jilani ST, Pandey PC (1984) Experimetnal investigations into the performance of water as dielectric in EDM. Int J Mach Tool Des Res 24:31–43. https://doi.org/10.1016/0020-7357(84)90044-1

    Article  Google Scholar 

  147. Mujumdar SS, Curreli D, Kapoor SG (2018) Effect of dielectric conductivity on micro-electrical discharge machining plasma characteristics using optical emission spectroscopy. J Micro Nano-Manuf. https://doi.org/10.1115/1.4039508

    Article  Google Scholar 

  148. Karasawa T, Kunieda M (1990) EDM capability with poured dielectric fluids without a tub. Bull Japan Soc Precis Eng 24(3):217–218

    Google Scholar 

  149. Dunnebacke G (1992) High performance electrical discharge machining using a water-based dielectric In: Proceedings of the 10th International Symposium for Electromachining pp 170–182

  150. Dewes R, Aspinwall D, Burrows J, Paul M FE-M (2001) High speed machining-multi-function/hybrid systems In: Proceedings of the fourth international conference on industrial tooling, Southampton, UK pp 91–100

  151. Liu Y, Ji R, Zhang Y, Zhang H (2010) Investigation of emulsion for die sinking EDM. Int J Adv Manuf Technol 47:403–409. https://doi.org/10.1007/s00170-009-2209-2

    Article  Google Scholar 

  152. Liu Y, Zhang Y, Ji R et al (2013) Experimental characterization of sinking electrical discharge machining using water in oil emulsion as dielectric. Mater Manuf Process 28:355–363. https://doi.org/10.1080/10426914.2012.700162

    Article  Google Scholar 

  153. Tian X, Liu Y, Cai B et al (2013) Characteristic investigation of pipe cutting technology based on electro-discharge machining. Int J Adv Manuf Technol 66:1673–1683. https://doi.org/10.1007/s00170-012-4449-9

    Article  Google Scholar 

  154. Dong H, Liu Y, Li M et al (2019) Experimental investigation of water-in-oil nanoemulsion in sinking electrical discharge machining. Mater Manuf Process 34:1129–1135. https://doi.org/10.1080/10426914.2019.1628266

    Article  Google Scholar 

  155. Kansal HK, Singh S, Kumar P (2007) Technology and research developments in powder mixed electric discharge machining (PMEDM). J Mater Process Technol 184:32–41. https://doi.org/10.1016/j.jmatprotec.2006.10.046

    Article  Google Scholar 

  156. Zhao WS, Meng QG, Wang ZL (2002) The application of research on powder mixed EDM in rough machining. J Mater Process Technol 129:30–33

    Article  Google Scholar 

  157. Furutania K, Saneto A, Takezawa H et al (2001) Accretion of titanium carbide by electrical discharge machining with powder suspended in working fluid. Precis Eng 25:138–144. https://doi.org/10.1016/S0141-6359(00)00068-4

    Article  Google Scholar 

  158. Kumar A, Kumar S, Mandal A, Rai Dixit A (2018) Investigation of powder mixed EDM process parameters for machining Inconel alloy using response surface methodology In: Materials Today: Proceedings Elsevier pp 6183–6188

  159. Joshi AY, Joshi AY (2021) Multi response optimization of PMEDM of Ti6Al4V using Al2O3 and SiC powder added de-ionized water as dielectric medium using grey relational analysis. SN Appl Sci 3:718. https://doi.org/10.1007/s42452-021-04712-3

    Article  Google Scholar 

  160. Kumar SS, Varol T, Canakci A et al (2021) A review on the performance of the materials by surface modification through EDM. Int J Light Mater Manuf 4:127–144. https://doi.org/10.1016/J.IJLMM.2020.08.002

    Article  Google Scholar 

  161. Joshi AY, Joshi AY (2019) A systematic review on powder mixed electrical discharge machining. Heliyon 5:e02963. https://doi.org/10.1016/j.heliyon.2019.e02963

    Article  Google Scholar 

  162. Philip JT, Mathew J, Kuriachen B (2021) Transition from EDM to PMEDM – impact of suspended particulates in the dielectric on Ti6Al4V and other distinct material surfaces: a review. J Manuf Process 64:1105–1142. https://doi.org/10.1016/J.JMAPRO.2021.01.056

    Article  Google Scholar 

  163. Chen S-L, Lin M-H, Huang G-X, Wang C-C (2014) Research of the recast layer on implant surface modified by micro-current electrical discharge machining using deionized water mixed with titanium powder as dielectric solvent. Appl Surf Sci 311:47–53. https://doi.org/10.1016/j.apsusc.2014.04.204

    Article  Google Scholar 

  164. Kibria G, Sarkar BR, Pradhan BB, Bhattacharyya B (2010) Comparative study of different dielectrics for micro-EDM performance during microhole machining of Ti-6Al-4V alloy. Int J Adv Manuf Technol 48:557–570. https://doi.org/10.1007/s00170-009-2298-y

    Article  Google Scholar 

  165. Bhardwaj A, Singh S (2011) Review to EDM by using water and powder-mixed dielectric fluid. J Miner Mater Charact Eng 10:199–230. https://doi.org/10.4236/jmmce.2011.102014

    Article  Google Scholar 

  166. Ou SF, Wang CY (2017) Effects of bioceramic particles in dielectric of powder-mixed electrical discharge machining on machining and surface characteristics of titanium alloys. J Mater Process Technol 245:70–79. https://doi.org/10.1016/J.JMATPROTEC.2017.02.018

    Article  Google Scholar 

  167. Ekmekci N, BE (2016) Electrical discharge machining of Ti6Al4V in hydroxyapatite powder mixed dielectric liquid Mater Manuf Process 31:1663–1670 https://doi.org/10.1080/10426914.2015.1090591

  168. Daneshmand S, Monfared V, Akbar A, Neyestanak L (2017) Effect of tool rotational and Al 2 O 3 powder in electro discharge machining characteristics of NiTi-60 shape memory alloy. SILICON 9:273–283. https://doi.org/10.1007/s12633-016-9412-1

    Article  Google Scholar 

  169. Kumar A, Mandal A, Dixit AR et al (2019) Comparison in the performance of EDM and NPMEDM using Al 2 O 3 nanopowder as an impurity in DI water dielectric. Int J Adv Manuf Technol 100:1327–1339. https://doi.org/10.1007/s00170-018-3126-z

    Article  Google Scholar 

  170. Rajamanickam S and PJ (2021) Effect of conductive, semi-conductive and non-conductive powder-mixed media on micro electric discharge machining performance of Ti-6Al-4V Int J Electrochem Sci 16:210317 https://doi.org/10.20964/2021.03.29

  171. Yu YT, Hsieh SF, Lin MH et al (2020) Effects of gas-assisted perforated electrode with rotation on the machining efficiency of PMEDM of titanium. Int J Adv Manuf Technol 107:1377–1386. https://doi.org/10.1007/s00170-019-04882-w

    Article  Google Scholar 

  172. Kumar A, Mandal A, Dixit AR, Mandal DK (2020) Quantitative analysis of bubble size and electrodes gap at different dielectric conditions in powder mixed EDM process. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-020-05189-x

    Article  Google Scholar 

  173. Tang L, Ji Y, Zhang XY et al (2020) Stirring tank design for powder-mixed EDM SiC/Al and solid-liquid suspension uniformity research. Int J Adv Manuf Technol 107:2007–2021. https://doi.org/10.1007/s00170-020-05146-8

    Article  Google Scholar 

  174. Gugulothu B, Rao GKM, Bezabih M (2021) Grey relational analysis for multi-response optimization of process parameters in green electrical discharge machining of Ti-6Al-4V alloy. Mater Today Proc 46:89–98. https://doi.org/10.1016/J.MATPR.2020.06.135

    Article  Google Scholar 

  175. Gugulothu B, Krishna Mohana Rao G, Hanuantha Rao D et al (2021) Experimental results on EDM of Ti-6Al-4V in drinking water with graphite powder concentration. Mater Today Proc 46:234–242. https://doi.org/10.1016/J.MATPR.2020.07.616

    Article  Google Scholar 

  176. Singh S, Patel B, Upadhyay RK, Singh NK (2021) Improvement of process performance of powder mixed electrical discharge machining by optimisation -a review. Adv Mater Process Technol. https://doi.org/10.1080/2374068X.2021.1945300

    Article  Google Scholar 

  177. Sharma G, Kumar K, Satsangi PS, Sharma N (2021) Surface modification of biodegradable Mg-4Zn alloy using PMEDM an experimental investigation, optimization and corrosion analysis. IRBM. https://doi.org/10.1016/j.irbm.2021.02.003

    Article  Google Scholar 

  178. Valaki JB, Rathod PP (2016) Assessment of operational feasibility of waste vegetable oil based bio-dielectric fluid for sustainable electric discharge machining (EDM). Int J Adv Manuf Technol 87:1509–1518. https://doi.org/10.1007/s00170-015-7169-0

    Article  Google Scholar 

  179. Sapkale SC, Dabade UA (2017) Effect of dielectric fluid in EDM: a review. Adva Sci Technol Res J 13:390–394

    Google Scholar 

  180. Valaki JB, Rathod PP, Sankhavara CD (2016) investigations on palm oil based biodielectric fluid for sustainable electric discharge machining In: International Conference on Advances in Materials and Manufacturing (ICAMM-2016) pp 151–160

  181. Ahmad S, Chendang RN, Lajis MA, Supawi A, Abd Rahim E (2020) Machinability performance of RBD palm oil as a bio degradable dielectric fluid on sustainable electrical discharge machining (EDM) of AISI D2 steel. In: Advances in material sciences and engineering. Springer, Singapore, pp 509–517. https://doi.org/10.1007/978-981-13-8297-0_53

    Chapter  Google Scholar 

  182. Valaki JB, Rathod PP, Sankhavara CD (2016) Investigations on technical feasibility of Jatropha curcas oil based bio dielectric fluid for sustainable electric discharge machining (EDM). J Manuf Process 22:151–160. https://doi.org/10.1016/j.jmapro.2016.03.004

    Article  Google Scholar 

  183. Mali HS and Kumar N (2016) Investigating feasibility of waste vegetable oil for sustainable EDM. 6th Int 27th All India Manuf Technol Des Res Conf 405–411

  184. Valaki JB, Rathod PP (2016) Investigating feasibility through performance analysis of green dielectrics for sustainable electric discharge machining. Mater Manuf Process 31:541–549. https://doi.org/10.1080/10426914.2015.1070430

    Article  Google Scholar 

  185. Ng PS, Kong SA, Yeo SH (2017) Investigation of biodiesel dielectric in sustainable electrical discharge machining. Int J Adv Manuf Technol 90:2549–2556. https://doi.org/10.1007/s00170-016-9572-6

    Article  Google Scholar 

  186. Das S, Paul S, BD (2020) Feasibility investigation of neem oil as a dielectric for electrical discharge machining Int J Adv Manuf Technol 106:1179–1189 https://doi.org/10.1007/s00170-019-04736-5

  187. Singaravel B, Shekar KC, Reddy GG, Prasad SD (2019) Experimental investigation of vegetable oil as dielectric fluid in Electric discharge machining of Ti-6Al-4V. Ain Shams Eng J. https://doi.org/10.1016/j.asej.2019.07.010

    Article  Google Scholar 

  188. Das S, Paul S, Doloi B (2019) Investigation of the machining performance of neem oil as a dielectric medium of EDM: a sustainable approach. IOP Conf Ser Mater Sci Eng 653:012017. https://doi.org/10.1088/1757-899X/653/1/012017

    Article  Google Scholar 

  189. Yunus Khan M, Sudhakar Rao P, Pabla BS (2019) Investigations on the feasibility of Jatropha curcas oil based biodiesel for sustainable dielectric fluid in EDM process. Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.11.325

    Article  Google Scholar 

  190. Mishra BP, Routara BC (2020) Evaluation of technical feasibility and environmental impact of Calophyllum Inophyllum (Polanga) oil based bio-dielectric fluid for green EDM. Meas J Int Meas Confed. https://doi.org/10.1016/j.measurement.2020.107744

    Article  Google Scholar 

  191. Das S, Paul S, Doloi B (2020) Feasibility assessment of some alternative dielectric mediums for sustainable electrical discharge machining: a review work. J Braz Soc Mech Sci Eng 42:148. https://doi.org/10.1007/s40430-020-2238-1

    Article  Google Scholar 

  192. Singaravel B, Shekar KC, Reddy GG, Prasad SD (2020) Performance analysis of different tool shape in electric discharge machining process with vegetable oil as dielectric fluid. In: Advances in applied mechanical engineering. Springer, Singapore, pp 1069–1077. https://doi.org/10.1007/978-981-15-1201-8_114

    Chapter  Google Scholar 

  193. Srinivas Viswanth V, Ramanujam R, Rajyalakshmi G (2020) Performance study of eco-friendly dielectric in EDM of AISI 2507 super duplex steel using Taguchi-fuzzy TOPSIS approach. Int J Product Qual Manag 29:518–541. https://doi.org/10.1504/IJPQM.2020.106425

    Article  Google Scholar 

  194. Joshi AY (2021) Joshi AY (2021) Feasibility Analysis of Powder-Mixed Deionized Water as Dielectric for Machining Ti6Al4V. J Inst Eng Ser C 1022(102):337–347. https://doi.org/10.1007/S40032-020-00639-7

    Article  Google Scholar 

  195. Behera BC, Rout M, Mondal AK (2021) Assessment of bio-dielectric calophyllum inophyllum (polanga) oil in electro-discharge machining: a step toward sustainable machining. Next generation materials and processing technologies. Springer, Singapore, pp 265–275

    Chapter  Google Scholar 

  196. Nagabhooshanam N, Baskar S, Anitha K, Arumugam S (2021) Sustainable machining of hastelloy in EDM using nanoparticle-infused biodegradable dielectric fluid. Arab J Sci Eng. https://doi.org/10.1007/s13369-021-05652-1

    Article  Google Scholar 

  197. Das S, Paul S, Doloi B (2021) Assessment of the impacts of bio-dielectrics on the textural features and recast-layers of EDM-surfaces. Mater Manuf Process 36:245–255. https://doi.org/10.1080/10426914.2020.1832678

    Article  Google Scholar 

  198. Kiran P, Mohanty S, Das AK (2021) Surface modification through sustainable micro-EDM process using powder mixed bio-dielectrics. Mater Manuf Process. https://doi.org/10.1080/10426914.2021.1967976

    Article  Google Scholar 

  199. Chaudhury P, Samantaray S (2021) A comparative study of different dielectric medium for sustainable EDM of non-conductive material by electro-thermal modelling. Mater Today Proc 41:437–444. https://doi.org/10.1016/J.MATPR.2020.10.162

    Article  Google Scholar 

  200. Yadav A, Singh Y, Singh S, Negi P (2021) Sustainability of vegetable oil based bio-diesel as dielectric fluid during EDM process – a review. Mater Today Proc 46:11155–11158. https://doi.org/10.1016/J.MATPR.2021.01.967

    Article  Google Scholar 

  201. Alam MN, Khan ZA, Siddiquee AN (2021) A hybrid multi-criteria decision-making approach for selection of sustainable dielectric fluid for electric discharge machining process. Adv Manuf Ind Eng. https://doi.org/10.1007/978-981-15-8542-5_45

    Article  Google Scholar 

  202. Singh NK, Yadav L, Lal S (2020) Experimental investigation for sustainable electric discharge machining with Pongamia and Jatropha as dielectric medium. Adv Mater Process Technol. https://doi.org/10.1080/2374068X.2020.1860499

    Article  Google Scholar 

  203. Yaşar H, Ekmekci B (2021) The effect of micro and nano hydroxyapatite powder on biocompatibility and surface integrity of Ti6Al4V (ELI) in powder mixed electrical discharge machining. Surf Topogr Metrol Prop 9:015015. https://doi.org/10.1088/2051-672X/ABDDA2

    Article  Google Scholar 

  204. Boopathi S (2021) An extensive review on sustainable developments of dry and near-dry electrical discharge machining processes. J Manuf Sci Eng. https://doi.org/10.1115/1.4052527

    Article  Google Scholar 

  205. Zhang QH, Zhang JH, Deng JX et al (2002) Ultrasonic vibration electrical discharge machining in gas. J Mater Process Technol 129:135–138

    Article  Google Scholar 

  206. Zhang QH, Du R, Zhang JH, Zhang QB (2006) An investigation of ultrasonic-assisted electrical discharge machining in gas. Int J Mach Tools Manuf 46:1582–1588. https://doi.org/10.1016/j.ijmachtools.2005.09.023

    Article  Google Scholar 

  207. Curodeau A, Richard M, Frohn-Villeneuve L (2004) Molds surface finishing with new EDM process in air with thermoplastic composite electrodes. J Mater Process Technol 149:278–283. https://doi.org/10.1016/j.jmatprotec.2003.10.040

    Article  Google Scholar 

  208. Liqing L, Yingjie S (2013) Study of dry EDM with oxygen-mixed and cryogenic cooling approaches In: Procedia CIRP Elsevier pp 344–350

  209. Ok JG, Kim BH, Sung WY, Lee SM, Lee SW, Kim WJ, Park JW, Chu CN, Kim YH (2007) Electrical discharge machining of carbon nanomaterials in air: machining characteristics and the advanced field emission applications. J Micromech Microeng 18:025007

    Article  Google Scholar 

  210. Saha SK, Choudhury SK (2009) Experimental investigation and empirical modeling of the dry electric discharge machining process. Int J Mach Tools Manuf 49:297–308. https://doi.org/10.1016/j.ijmachtools.2008.10.012

    Article  Google Scholar 

  211. Xu MG, Zhang JH, Li Y et al (2009) Material removal mechanisms of cemented carbides machined by ultrasonic vibration assisted EDM in gas medium. J Mater Process Technol 209:1742–1746. https://doi.org/10.1016/j.jmatprotec.2008.04.031

    Article  Google Scholar 

  212. Fujiki M, Kim GY, Ni J, Shih AJ (2011) Gap control for near-dry EDM milling with lead angle. Int J Mach Tools Manuf 51:77–83. https://doi.org/10.1016/j.ijmachtools.2010.09.002

    Article  Google Scholar 

  213. Li L, Fu Y, Song Y (2011) Research on dry EDM processing performance with two kinds of pulse generator modes In: ASME 2011 International manufacturing science and engineering conference Vol 1 ASME, pp 391–397

  214. Beravala H, Pandey PM (2018) Experimental investigations to evaluate the effect of magnetic field on the performance of air and argon gas assisted EDM processes. J Manuf Process 34:356–373. https://doi.org/10.1016/j.jmapro.2018.06.026

    Article  Google Scholar 

  215. Jahan MP, Malshe AP, Rajurkar KP (2012) Experimental investigation and characterization of nano-scale dry electro-machining. J Manuf Process 14:443–451. https://doi.org/10.1016/j.jmapro.2012.08.004

    Article  Google Scholar 

  216. Paul G, Roy S, Sarkar S et al (2013) Investigations on influence of process variables on crater dimensions in micro-EDM of γ-titanium aluminide alloy in dry and oil dielectric media. Int J Adv Manuf Technol 65:1009–1017. https://doi.org/10.1007/s00170-012-4235-8

    Article  Google Scholar 

  217. Teimouri R, Baseri H (2013) Experimental study of rotary magnetic field-assisted dry EDM with ultrasonic vibration of workpiece. Int J Adv Manuf Technol 67:1371–1384. https://doi.org/10.1007/s00170-012-4573-6

    Article  Google Scholar 

  218. Bai X, Zhang Q-H, Yang T-Y, Zhang J-H (2013) Research on material removal rate of powder mixed near dry electrical discharge machining. Int J Adv Manuf Technol 68:1757–1766. https://doi.org/10.1007/s00170-013-4973-2

    Article  Google Scholar 

  219. Kitamura T, Kunieda M (2014) Clarification of EDM gap phenomena using transparent electrodes. CIRP Ann Manuf Technol 63:213–216. https://doi.org/10.1016/j.cirp.2014.03.059

    Article  Google Scholar 

  220. Valaki JB, Rathod PP, Khatri BC (2015) Environmental impact, personnel health and operational safety aspects of electric discharge machining: a review. Proc Inst Mech Eng Part B J Eng Manuf 229:1481–1491. https://doi.org/10.1177/0954405414543314

    Article  Google Scholar 

  221. Kurniawan R, Thirumalai Kumaran S, Arumuga Prabu V et al (2017) Measurement of burr removal rate and analysis of machining parameters in ultrasonic assisted dry EDM (US-EDM) for deburring drilled holes in CFRP composite. Measurement 110:98–115. https://doi.org/10.1016/j.measurement.2017.06.008

    Article  Google Scholar 

  222. Goiogana M, Flaño O, Sarasua JA et al (2019) Design and validation of a headstock prototype for dry EDM drilling. Int J Adv Manuf Technol 105:295–308. https://doi.org/10.1007/s00170-019-04182-3

    Article  Google Scholar 

  223. Gill SS, Singh J (2010) Effect of deep cryogenic treatment on machinability of titanium alloy (Ti-6246) in electric discharge drilling. Mater Manuf Process 25:378–385. https://doi.org/10.1080/10426910903179914

    Article  Google Scholar 

  224. Srivastava V, Pandey PM (2013) Experimental investigation on electrical discharge machining process with ultrasonic-assisted cryogenically cooled electrode. Proc Inst Mech Eng Part B J Eng Manuf 227:301–314. https://doi.org/10.1177/0954405412469487

    Article  Google Scholar 

  225. Chen H-J, Wu K-L, Yan B-H (2013) Dry electrical discharge coating process on aluminum by using titanium powder compact electrode. Mater Manuf Process 28:1286–1293. https://doi.org/10.1080/10426914.2013.822983

    Article  Google Scholar 

  226. Vinoth Kumar S, Pradeep Kumar M (2015) Machining process parameter and surface integrity in conventional EDM and cryogenic EDM of Al-SiCp MMC. J Manuf Process 20:70–78. https://doi.org/10.1016/j.jmapro.2015.07.007

    Article  Google Scholar 

  227. Huang T-S, Hsieh S-F, Chen S-L et al (2015) Surface modification of TiNi-based shape memory alloys by dry electrical discharge machining. J Mater Process Technol 221:279–284. https://doi.org/10.1016/j.jmatprotec.2015.02.025

    Article  Google Scholar 

  228. Zou R, Yu Z, Yan C et al (2018) Micro electrical discharge machining in nitrogen plasma jet. Precis Eng 51:198–207. https://doi.org/10.1016/j.precisioneng.2017.08.011

    Article  Google Scholar 

  229. Kunieda M, Miyoshi Y, Takaya T et al (2003) High speed 3D milling by dry EDM. CIRP Ann Manuf Technol 52:147–150. https://doi.org/10.1016/s0007-8506(07)60552-6

    Article  Google Scholar 

  230. Yu Z, Jun T, Masanori K (2004) Dry electrical discharge machining of cemented carbide. J Mater Process Technol 149(1–3):353–357. https://doi.org/10.1016/j.jmatprotec.2003.10.044

    Article  Google Scholar 

  231. Kunieda M, Takaya T, Nakano S (2004) Improvement of dry EDM characteristics using piezoelectric actuator. CIRP Ann 53:183–186. https://doi.org/10.1016/S0007-8506(07)60674-X

    Article  Google Scholar 

  232. Govindan P, Joshi SS (2010) Experimental characterization of material removal in dry electrical discharge drilling. Int J Mach Tools Manuf 50:431–443. https://doi.org/10.1016/j.ijmachtools.2010.02.004

    Article  Google Scholar 

  233. Puthumana G, Joshi SS (2011) Investigations into performance of dry EDM using slotted electrodes. Int J Precis Eng Manuf 12:957–963. https://doi.org/10.1007/s12541-011-0128-2

    Article  Google Scholar 

  234. Joshi S, Govindan P, Malshe A, Rajurkar K (2011) Experimental characterization of dry EDM performed in a pulsating magnetic field. CIRP Ann 60:239–242. https://doi.org/10.1016/j.cirp.2011.03.114

    Article  Google Scholar 

  235. Govindan P, Joshi SS (2012) Analysis of micro-cracks on machined surfaces in dry electrical discharge machining. J Manuf Process 14:277–288. https://doi.org/10.1016/j.jmapro.2012.05.003

    Article  Google Scholar 

  236. Zhang Y, Liu Y, Shen Y et al (2014) Investigation on the influence of the dielectrics on the material removal characteristics of EDM. J Mater Process Technol 214:1052–1061. https://doi.org/10.1016/j.jmatprotec.2013.12.012

    Article  Google Scholar 

  237. Adineh VR, Coufal O, MB, (2015) Calculation of net emission coefficient of electrical discharge machining arc plasmas in mixtures of nitrogen with graphite copper and tungsten. J Phys D Appl Phys 48:405202

    Article  Google Scholar 

  238. Pragadish N, Kumar MP (2015) Surface characteristics analysis of dry EDMed AISI D2 steel using modified tool design. J Mech Sci Technol 29:1737–1743. https://doi.org/10.1007/s12206-015-0347-z

    Article  Google Scholar 

  239. Islam MM, Li CP, Ko TJ (2017) Dry electrical discharge machining for deburring drilled holes in CFRP composite. Int J Precis Eng Manuf Technol 4:149–154. https://doi.org/10.1007/s40684-017-0018-x

    Article  Google Scholar 

  240. Kong L, Liu Z, Han Y, Qiu M (2018) Research on the efficient and stable sinking electrical discharge machining ablation process of Ti-6Al-4V. Int J Adv Manuf Technol 97:2151–2161. https://doi.org/10.1007/s00170-018-2071-1

    Article  Google Scholar 

  241. Uhlmann E, Schimmelpfennig T-M, Perfilov I et al (2016) Comparative analysis of Dry-EDM and conventional EDM for the manufacturing of micro holes in Si3N4-TiN. Procedia CIRP 42:173–178. https://doi.org/10.1016/j.procir.2016.02.214

    Article  Google Scholar 

  242. Macedo FTB, Wiessner M, Hollenstein C et al (2016) Dependence of crater formation in dry EDM on electrical breakdown mechanism. Procedia CIRP 42:161–166. https://doi.org/10.1016/j.procir.2016.02.212

    Article  Google Scholar 

  243. Lin Y-C, Hung J-C, Chow H-M et al (2016) Machining characteristics of a hybrid process of EDM in gas combined with ultrasonic vibration and AJM. Procedia CIRP 42:167–172. https://doi.org/10.1016/j.procir.2016.02.213

    Article  Google Scholar 

  244. Lin YC, Hung JC, Lee HM et al (2017) Machining characteristics of a hybrid process of EDM in gas combined with ultrasonic vibration. Int J Adv Manuf Technol 92:2801–2808. https://doi.org/10.1007/s00170-017-0369-z

    Article  Google Scholar 

  245. Singh NK, Pandey PM, Singh KK (2017) Experimental investigations into the performance of EDM using argon gas-assisted perforated electrodes. Mater Manuf Process 32:940–951. https://doi.org/10.1080/10426914.2016.1221079

    Article  Google Scholar 

  246. Fattahi S, Baseri H (2017) Analysis of dry electrical discharge machining in different dielectric mediums. Proc Inst Mech Eng Part E J Process Mech Eng 231:497–512. https://doi.org/10.1177/0954408915611540

    Article  Google Scholar 

  247. Jiang Y, Ping X, Zhang Y, Zhao W (2021) Effects of gas medium on submersed gas-flushing electrical discharge machining of different metal materials. Int J Adv Manuf Technol 1157(115):2313–2323. https://doi.org/10.1007/S00170-021-07192-2

    Article  Google Scholar 

  248. Govindan P, Agrawal R, Joshi SS (2011) Experimental investigation on dry EDM using helium gas dielectric. Int J Manuf Technol Manag 24:40–56. https://doi.org/10.1504/IJMTM.2011.046759

    Article  Google Scholar 

  249. Jahan MP, Virwani KR, Rajurkar KP, Malshe AP (2013) A comparative study of the dry and wet nano-scale electro-machining. Procedia CIRP 6:626–631. https://doi.org/10.1016/j.procir.2013.03.081

    Article  Google Scholar 

  250. Saleh T, Dahmardeh M, Nojeh A, Takahata K (2013) Dry micro-electro-discharge machining of carbon-nanotube forests using sulphur-hexafluoride. Carbon N Y 52:288–295. https://doi.org/10.1016/j.carbon.2012.09.030

    Article  Google Scholar 

  251. Wang T, Zhe J, Zhang YQ, Li YL, Wen XR (2013) Thermal and fluid field simulation of single pulse discharge in dry EDM. Procedia CIRP 6:427–431. https://doi.org/10.1016/j.procir.2013.03.032

    Article  Google Scholar 

  252. Yue X, Yang X (2016) Study on the distribution of removal material of EDM in deionized water and gas with molecular dynamics simulation. Procedia CIRP 42:691–696. https://doi.org/10.1016/j.procir.2016.02.303

    Article  Google Scholar 

  253. Tanimura T (1989) Development of EDM in the Mist. Proc IJEM 9:313–316

    Google Scholar 

  254. Yoshida M, Kunieda M (1999) Study on mechanism for minute tool electrode wear in dry EDM. J Jpn Soc Precis Eng 65:689–693. https://doi.org/10.2493/jjspe.65.689

    Article  Google Scholar 

  255. Yu Z, Takahashi J, Nakajima N et al (2005) Feasibility of 3-D surface machining by dry EDM. Int J Electr Mach 10:15–20

    Article  Google Scholar 

  256. Tao J, Shih AJ, Ni J (2008) Experimental study of the dry and near-dry electrical discharge milling processes. J Manuf Sci Eng 130:0110021–0110029. https://doi.org/10.1115/1.2784276

    Article  Google Scholar 

  257. Shen Y, Liu Y, Sun W et al (2016) High-speed near dry electrical discharge machining. J Mater Process Technol 233:9–18. https://doi.org/10.1016/j.jmatprotec.2016.02.008

    Article  Google Scholar 

  258. Gholipoor A, Baseri H, Shabgard MR (2015) Investigation of near dry EDM compared with wet and dry EDM processes. J Mech Sci Technol 29:2213–2218. https://doi.org/10.1007/s12206-015-0441-2

    Article  Google Scholar 

  259. Dhakar K, Pundir H, Dvivedi A, Kumar P (2015) Near-dry electrical discharge machining of stainless steel. Int J Mach Mach Mater 17:127–138. https://doi.org/10.1504/IJMMM.2015.070917

    Article  Google Scholar 

  260. Pattabhiraman A, Marla D, Kapoor SG (2015) Atomized dielectric spray-based electric discharge machining for sustainable manufacturing. J Micro Nano Manuf 3:041008. https://doi.org/10.1115/1.4031666

    Article  Google Scholar 

  261. Gholipoor A, Baseri H, Shakeri M, Shabgard M (2016) Investigation of the effects of magnetic field on near-dry electrical discharge machining performance. Proc Inst Mech Eng Part B J Eng Manuf 230:744–751

    Article  Google Scholar 

  262. Wang X, Shen Y (2019) High-speed EDM milling with in-gas and outside-liquid electrode flushing techniques. Int J Adv Manuf Technol 104:3191–3198. https://doi.org/10.1007/s00170-019-04242-8

    Article  Google Scholar 

  263. Beravala H, Pandey PM (2020) Modelling of material removal rate in the magnetic field and air-assisted electrical discharge machining. Proc Inst Mech Eng Part C J Mech Eng Sci 234:1286–1297. https://doi.org/10.1177/0954406219892297

    Article  Google Scholar 

  264. Tao J, Shih AJ, JN (2008) Near-dry EDM milling of mirror-like surface finish Int J Electr Mach 13:29–33 https://doi.org/10.2526/ijem.13.29

  265. Takezawa H, Hayashi S (2018) Effect of mixing gas for machining surface property of micro-bubble entrained EDM In: Procedia CIRP Elsevier pp 298–302

  266. Zou R, Yu Z, Zhang C et al (2019) High-speed micro electrical discharge machining with fine surface quality in atmospheric pressure nitrogen plasma jet. J Mater Process Technol. https://doi.org/10.1016/j.jmatprotec.2019.116270

    Article  Google Scholar 

  267. Zhang C, Zou R, Yu Z, Natsu W (2020) Micro EDM aided by ultrasonic vibration in nitrogen plasma jet and mist. Int J Adv Manuf Technol 106:5269–5276. https://doi.org/10.1007/s00170-020-05032-3

    Article  Google Scholar 

  268. Zhang Y, Liu Y, Shen Y et al (2013) Die-sinking electrical discharge machining with oxygen-mixed water-in-oil emulsion working fluid. Proc Inst Mech Eng Part B J Eng Manuf 227:109–118. https://doi.org/10.1177/0954405412464146

    Article  Google Scholar 

  269. Boopathi S, Sivakumar K (2016) Optimal parameter prediction of oxygen-mist near-dry Wire-cut EDM. Int J Manuf Technol Manag 30:164–178. https://doi.org/10.1504/IJMTM.2016.077812

    Article  Google Scholar 

  270. Yadav VK, Kumar P, Dvivedi A (2019) Performance enhancement of rotary tool near-dry EDM of HSS by supplying oxygen gas in the dielectric medium. Mater Manuf Process 34:1832–1846. https://doi.org/10.1080/10426914.2019.1675889

    Article  Google Scholar 

  271. Dhakar K, Dvivedi A (2016) Parametric evaluation on near-dry electric discharge machining. Mater Manuf Process 31:413–421. https://doi.org/10.1080/10426914.2015.1037905

    Article  Google Scholar 

  272. Dhakar K, Dvivedi A (2017) Influence of glycerin-air dielectric medium on near-dry EDM of titanium alloy. Int J Addit Subtractive Mater Manuf 1:328. https://doi.org/10.1504/IJASMM.2017.089928

    Article  Google Scholar 

  273. Dhakar K, Dvivedi A (2017) Experimental investigation on near-dry EDM using glycerin-air mixture as dielectric medium. Mater Today Proc 4:5344–5350. https://doi.org/10.1016/j.matpr.2017.05.045

    Article  Google Scholar 

  274. Kumar S, Grover S, Walia RS (2017) Optimisation strategies in ultrasonic vibration assisted electrical discharge machining: a review. Int J Precis Technol 7:51. https://doi.org/10.1504/ijptech.2017.084557

    Article  Google Scholar 

  275. Tseng K-H, Chou C-J, Shih S-H et al (2018) Preparation of graphene through EDM interfered with CO2. J Clust Sci 29:555–559. https://doi.org/10.1007/s10876-018-1367-5

    Article  Google Scholar 

  276. Sundriyal S, Walia RS (2020) Powder mixed near dry electric discharge machining parameter optimization for tool wear rate. In: Advances in unconventional machining and composites. Springer, Singapore, pp 3–16. https://doi.org/10.1007/978-981-32-9471-4_1

    Chapter  Google Scholar 

  277. Yadav VK, Kumar P, Dvivedi A (2019) Effect of tool rotation in near-dry EDM process on machining characteristics of HSS. Mater Manuf Process 34:779–790. https://doi.org/10.1080/10426914.2019.1605171

    Article  Google Scholar 

  278. Sundriyal S, Vipin WR (2021) Experimental investigation and performance enhancements characteristics of gaseous assisted powder mixed near dry electric discharge machining. Proc Inst Mech Eng Part E J Process Mech Eng 235:1048–1058. https://doi.org/10.1177/0954408920988424

    Article  Google Scholar 

  279. Yadav VK, Singh R, Kumar P, Dvivedi A (2021) Performance enhancement of rotary tool near-dry EDM process through tool modification. J Braz Soc Mech Sci Eng 432(43):1–16. https://doi.org/10.1007/S40430-021-02806-Y

    Article  Google Scholar 

  280. Kong L, Liu Z, Wang X, Qiu M (2021) Study on the machining characteristics of high-efficiency mixed gas atomized discharge ablation process of titanium alloy. Int J Adv Manuf Technol 1139(113):2715–2724. https://doi.org/10.1007/S00170-021-06767-3

    Article  Google Scholar 

  281. Li M, Cai L, Zhao J (2021) Research on discharge characteristics of working mediums of electric discharge machining. Proc Inst Mech Eng Part B J Eng Manuf 235:34–40. https://doi.org/10.1177/0954405420951093

    Article  Google Scholar 

  282. Jawahir IS, Keith ER, Dillon OW, Holloway L, AH (2007) Design for sustainability (DFS): new challenges in developing and implementing a curriculum for next generation design and manufacturing engineers Int J Eng Educ 23:1053 https://doi.org/10.1007/978-1-4614-7990-1

  283. Kibria G, Sherpa TD, Shivakoti I, Pradhan BB (2020) Electrical discharge micromachining with sustainable dielectrics. In: Sustainability modeling in engineering: a multi-criteria perspective, pp 229–252. https://doi.org/10.1142/9789813276338_0010

    Chapter  Google Scholar 

  284. Singh M, Singh S (2020) Electrochemical discharge machining: fumes generations, properties and biological effects. Int J Adv Manuf Technol 106:357–370. https://doi.org/10.1007/s00170-019-04632-y

    Article  Google Scholar 

  285. Singh M, Singh S (2020) Sustainable electrochemical discharge machining process: characterization of emission products and occupational risks to operator. Mach Sci Technol. https://doi.org/10.1080/10910344.2020.1752238

    Article  Google Scholar 

  286. Kokhanovskaya TS (1983) EDM working fluids In: Proceedings of 7th International Symposium on Electromachining Birmingham pp 251–262

  287. Roethel F, Junkar M, MŽ (1991) The influence of dielectric fluids on EDM process control In: Proceedings of the 3rd international machinery monitoring and diagnostics conference Las Vegas pp 20–23

  288. Masuzawa T, Tanaka K, Nakamura Y, Kinoshita N (1983) Water-based dielectric solution for EDM. CIRP Ann 32:119–122. https://doi.org/10.1016/S0007-8506(07)63374-5

    Article  Google Scholar 

  289. Tao J (2008) Investigation of dry and near-dry electrical discharge milling processes. Dissertation, University of Michigan

  290. Brouwer DH, Gijsbers JHJ, MWL (2004) Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies Ann Occup Hyg 48:439–453 https://doi.org/10.1093/annhyg/meh040

  291. Ross AS, Teschke K, Brauer M, SMK (2004) Determinants of exposure to metalworking fluid aerosol in small machine shops Ann Occup Hyg 48:383–391 https://doi.org/10.1093/annhyg/meh042

  292. Wang YH, Liao CC, Chen YC et al (2020) The feasibility of eco-friendly electrical discharge machining for surface modification of Ti: a comparison study in surface properties, bioactivity, and cytocompatibility. Mater Sci Eng C 108:110192. https://doi.org/10.1016/j.msec.2019.110192

    Article  Google Scholar 

  293. Wu X, Liu Y, Zhang X et al (2020) Sustainable and high-efficiency green electrical discharge machining milling method. J Clean Prod 274:123040. https://doi.org/10.1016/j.jclepro.2020.123040

    Article  Google Scholar 

  294. Kern R, R K (2008) Safety and green EDM EDM Today 22:22–25

  295. El-Hofy H, Youssef H (2009) Environmental hazards of nontraditional machining In: IASME/WSEAS International Conference on Energy and Environment (EE’09) pp 140–145

  296. Jose M, Sivapirakasam SP, Surianarayanan M (2010) Analysis of aerosol emission and hazard evaluation of electrical discharge machining (EDM) process. Ind Health 48:478–486. https://doi.org/10.2486/indhealth.MS1127

    Article  Google Scholar 

  297. Boubekri N, Shaikh V (2012) Machining using minimum quantity lubrication: a technology for sustainability. Int J Appl Sci Technol 2(1)

  298. Sivapirakasam SP, Mathew J, Surianarayanan M (2011) Multi-attribute decision making for green electrical discharge machining. Expert Syst Appl 38:8370–8374. https://doi.org/10.1016/j.eswa.2011.01.026

    Article  Google Scholar 

  299. Rehbein W, Schulze HP, Mecke K et al (2004) Influence of selected groups of additives on breakdown in EDM sinking. J Mater Process Technol 149:58–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binoy Kumar Baroi.

Additional information

Technical Editor: by Adriano Fagali de Souza.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baroi, B.K., Jagadish & Patowari, P.K. A review on sustainability, health, and safety issues of electrical discharge machining. J Braz. Soc. Mech. Sci. Eng. 44, 59 (2022). https://doi.org/10.1007/s40430-021-03351-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03351-4

Keywords

Navigation