Skip to main content
Log in

Role of Sleep and Sleep Disorders in Cardiometabolic Risk: a Review and Update

  • Review
  • Published:
Current Sleep Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Sleep plays a pivotal role in regulating numerous physiological functions, including cardiovascular activity, glucose regulation, lipid management, and hormone secretion. This review explores the impact of insufficient and irregular sleep, as well as specific sleep disorders, on cardiometabolic risk. We aim to illuminate the potential mechanisms underlying these associations.

Recent Findings

A substantial body of evidence links sleep duration (both short and long), sleep regularity, and disorders such as obstructive sleep apnea, insomnia, and restless leg syndrome with the development of obesity, hypertension, hyperlipidemia, inflammation, diabetes, cardiovascular complications, and related mortality.

Summary

Despite the significant volume of research highlighting the interplay between sleep disturbances and cardiometabolic disorders, our understanding of this intricate relationship remains somewhat incomplete. Future research is essential to deepen our understanding and identify therapeutic strategies and interventions that can mitigate the detrimental effects of sleep disorders on cardiometabolic health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AF:

atrial fibrillation

AHI:

apnea-hypopnea index

ANS:

autonomic nervous system

BMI:

body mass index

BP:

blood pressure

CHD:

coronary heart disease

CMR:

cardiometabolic risks

CPAP:

continuous positive airway pressure

CRP:

C-reactive protein

CVD:

cardiovascular disease

DBP:

diastolic blood pressure

HbA1c:

hemoglobin A1c

HDL:

high-density lipoprotein

HF:

heart failure

HTN:

hypertension

HOMA-IR:

Homeostatic Model Assessment of Insulin Resistance

HPA:

hypothalamus pituitary adrenal

IL :

interleukin

IS:

interdaily stability

LDL :

low-density lipoprotein

LVEF:

left ventricular ejection fraction

MACEs:

major adverse cardiovascular events

MetS:

metabolic syndrome

MSLT:

multiple sleep latency test

OSA:

obstructive sleep apnea

RCTs:

randomized-controlled trials

RLS:

restless leg syndrome

SBD:

sleep-related breathing disorders

SBP:

systolic blood pressure

SD:

standard deviation

SJL:

social jetlag

SRI:

sleep regularity index

SV:

stroke volume

TNF:

tumor necrosis factor

T2D:

type 2 diabetes

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Tobaldini E, Fiorelli EM, Solbiati M, Costantino G, Nobili L, Montano N. Short sleep duration and cardiometabolic risk: from pathophysiology to clinical evidence. Nat Rev Cardiol. 2019;16(4):213–24. https://doi.org/10.1038/s41569-018-0109-6. It explores the relationship between short sleep duration and cardiometabolic risk and the pathophysiology behind this association, providing clinical evidence to support the claim.

    Article  PubMed  Google Scholar 

  2. • Mosavat M, Mirsanjari M, Arabiat D, Smyth A, Whitehead L. The role of sleep curtailment on leptin levels in obesity and diabetes mellitus. Obes Facts. 2021;14(2):214–21. https://doi.org/10.1159/000514095. It discusses the impact of short sleep duration on the regulation of leptin, an adipocyte-derived peptide that regulates food intake and energy expenditure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. •• Dejenie TA, GM MT, Admasu FT, Adella GA, Enyew EF, Kifle ZD, et al. Impact of objectively-measured sleep duration on cardiometabolic health: a systematic review of recent evidence. Front Endocrinol (Lausanne). 2022;13:1064969. https://doi.org/10.3389/fendo.2022.1064969. It examines the association between objectively measured sleep duration and cardiometabolic profiles, including cardiovascular diseases, T2DM, and metabolic syndrome.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gulati M, Levy PD, Mukherjee D, Amsterdam E, Bhatt DL, Birtcher KK, et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR guideline for the evaluation and diagnosis of chest pain: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021;144(22):e368–454. https://doi.org/10.1161/cir.0000000000001029.

    Article  PubMed  Google Scholar 

  5. •• Makarem N, Castro-Diehl C, St-Onge MP, Redline S, Shea S, Lloyd-Jones D, et al. Redefining cardiovascular health to include sleep: prospective associations with cardiovascular disease in the MESA Sleep Study. J Am Heart Assoc. 2022;11(21):e025252. https://doi.org/10.1161/JAHA.122.025252. It explores the relationship between sleep and cardiovascular health. It suggests that sleep parameters should be included in the definition of cardiovascular health, highlighting the prospective associations between sleep characteristics and the risk of cardiovascular disease.

    Article  PubMed  PubMed Central  Google Scholar 

  6. •• Kumar M, Orkaby A, Tighe C, Villareal DT, Billingsley H, Nanna MG, et al. Life’s Essential 8: optimizing health in older adults. JACC Adv. 2023;2(7) https://doi.org/10.1016/j.jacadv.2023.100560. It proposes a comprehensive approach to optimizing health in older adults. It introduces the concept of “Life’s Essential 8”, a set of eight health domains that are crucial for maintaining health and well-being in older adults.

  7. Wang W, Yang J, Wang K, Niu J, Wang J, Luo Z, et al. Assoication between self-reported sleep duration, physcial activity and the risk of all cause and cardiovascular diseases mortality from the NHANES database. BMC Cardiovasc Disord. 2023;23(1):467. https://doi.org/10.1186/s12872-023-03499-y.

    Article  PubMed  PubMed Central  Google Scholar 

  8. • Yin J, Jin X, Shan Z, Li S, Huang H, Li P, et al. Relationship of sleep duration with all-cause mortality and cardiovascular events: a systematic review and dose-response meta-analysis of prospective cohort studies. J Am Heart Assoc. 2017;6(9) https://doi.org/10.1161/jaha.117.005947. The study suggests that both short and long sleep durations are associated with increased risk of all-cause mortality and cardiovascular events.

  9. •• Yang L, Xi B, Zhao M, Magnussen CG. Association of sleep duration with all-cause and disease-specific mortality in US adults. J Epidemiol Community Health. 2021; https://doi.org/10.1136/jech-2020-215314. The study finds a U-shaped relationship, with both short and long sleep durations associated with increased mortality risk.

  10. • AS BH, Alghannam AF, Aljaloud KS, Aljuraiban GS, MA AM, Dobia AM, et al. Joint consensus statement of the Saudi Public Health Authority on the recommended amount of physical activity, sedentary behavior, and sleep duration for healthy Saudis: background, methodology, and discussion. Ann Thorac Med. 2021;16(3):225–38. https://doi.org/10.4103/atm.atm_32_21. It The presents a consensus statement on the recommended amount of physical activity, sedentary behavior, and sleep duration for healthy of all age group. The paper provides a comprehensive review for the evidence on sleep duration and health and well-being.

    Article  Google Scholar 

  11. •• Cui H, Xu R, Wan Y, Ling Y, Jiang Y, Wu Y, et al. Relationship of sleep duration with incident cardiovascular outcomes: a prospective study of 33,883 adults in a general population. BMC Public Health. 2023;23(1):124. https://doi.org/10.1186/s12889-023-15042-x. The study finds that both short and long sleep durations are associated with increased risk of cardiovascular outcomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. • Barragan R, Zuraikat FM, Cheng B, Scaccia SE, Cochran J, Aggarwal B, et al. Paradoxical effects of prolonged insufficient sleep on lipid profile: a pooled analysis of 2 randomized trials. J Am Heart Assoc. 2023;12(20):e032078. https://doi.org/10.1161/JAHA.123.032078. Sleep restriction raised high-density lipoprotein cholesterol but lowered total and low-density lipoprotein cholesterol in premenopausal women.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. •• Che T, Yan C, Tian D, Zhang X, Liu X, Wu Z. The association between sleep and metabolic syndrome: a systematic review and meta-analysis. Front Endocrinol (Lausanne). 2021;12:773646. https://doi.org/10.3389/fendo.2021.773646. The study found that both short and long sleep durations significantly increased the risk of metabolic syndrome. Also, short and long sleep increased the risk of obesity and high blood pressure. Short sleep was also found to potentially increase the risk of high blood sugar.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Saidi O, Rochette E, Del Sordo G, Doré É, Merlin É, Walrand S, et al. Eucaloric balanced diet improved objective sleep in adolescents with obesity. Nutrients. 2021;13(10) https://doi.org/10.3390/nu13103550.

  15. Matricciani L, Dumuid D, Paquet C, Fraysse F, Wang Y, Baur LA, et al. Sleep and cardiometabolic health in children and adults: examining sleep as a component of the 24-h day. Sleep Med. 2021;78:63–74. https://doi.org/10.1016/j.sleep.2020.12.001.

    Article  PubMed  Google Scholar 

  16. • Zhu B, Shi C, Park CG, Zhao X, Reutrakul S. Effects of sleep restriction on metabolism-related parameters in healthy adults: a comprehensive review and meta-analysis of randomized controlled trials. Sleep Med Rev. 2019;45:18–30. https://doi.org/10.1016/j.smrv.2019.02.002. It reviews the effects of sleep restriction on metabolism-related parameters in healthy adults, finding significant impacts on various metabolic outcomes.

    Article  CAS  PubMed  Google Scholar 

  17. • Lin J, Jiang Y, Wang G, Meng M, Zhu Q, Mei H, et al. Associations of short sleep duration with appetite-regulating hormones and adipokines: a systematic review and meta-analysis. Obes Rev. 2020;21(11):e13051. https://doi.org/10.1111/obr.13051. It investigates the associations between short sleep duration and appetite-regulating hormones and adipokines, finding significant relationships.

    Article  CAS  PubMed  Google Scholar 

  18. Antza C, Kostopoulos G, Mostafa S, Nirantharakumar K, Tahrani A. The links between sleep duration, obesity and type 2 diabetes mellitus. J Endocrinol. 2021;252(2):125–41. https://doi.org/10.1530/joe-21-0155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smiley A, King D, Bidulescu A. The association between sleep duration and metabolic syndrome: the NHANES 2013/2014. Nutrients. 2019;11(11) https://doi.org/10.3390/nu11112582.

  20. van Egmond LT, Meth EMS, Engstrom J, Ilemosoglou M, Keller JA, Vogel H, et al. Effects of acute sleep loss on leptin, ghrelin, and adiponectin in adults with healthy weight and obesity: a laboratory study. Obesity (Silver Spring). 2023;31(3):635–41. https://doi.org/10.1002/oby.23616.

    Article  CAS  PubMed  Google Scholar 

  21. Larsen SC, Horgan G, Mikkelsen MK, Palmeira AL, Scott S, Duarte C, et al. Association between objectively measured sleep duration, adiposity and weight loss history. Int J Obes (Lond). 2020;44(7):1577–85. https://doi.org/10.1038/s41366-020-0537-3.

    Article  PubMed  Google Scholar 

  22. • Hua J, Jiang H, Wang H, Fang Q. Sleep duration and the risk of metabolic syndrome in adults: a systematic review and meta-analysis. Front Neurol. 2021;12:635564. https://doi.org/10.3389/fneur.2021.635564. It examines the relationship between sleep duration and the risk of metabolic syndrome in adults, providing a comprehensive analysis of the available evidence.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dunn J, Singh K, Armstrong S, Wagner B, Counts J, Skinner A, et al. Physical activity and sleep changes among children with obesity during a period of school closures related to the COVID-19 pandemic. Res Sq [Preprint]. 2023. https://doi.org/10.21203/rs.3.rs-3293474/v1.

  24. Fair M, Decker J, Fiks AG, Mayne S, Morales KH, Williamson AA, et al. Optimizing intervention components for sleep promotion in children in the context of obesity prevention: the SLEEPY 2.0 study protocol. Front Sleep. 2023:2. https://doi.org/10.3389/frsle.2023.1264532.

  25. Gavela-Pérez T, Parra-Rodríguez A, Vales-Villamarín C, Pérez-Segura P, Mejorado-Molano FJ, Garcés C, et al. Relationship between eating habits, sleep patterns and physical activity and the degree of obesity in children and adolescents. Endocrinol Diabetes Nutr (Engl Ed). 2023;70(Suppl 3):10–7. https://doi.org/10.1016/j.endien.2023.08.001.

    Article  PubMed  Google Scholar 

  26. Duncan MJ, Mitchell J, Riazi NA, Belita E, Vanderloo LM, Carsley S, et al. Sleep duration change among adolescents in Canada: examining the impact of COVID-19 in worsening inequity. SSM Popul Health. 2023;23:101477. https://doi.org/10.1016/j.ssmph.2023.101477.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Roberto DMT, Pereira LJ, Vieira FGK, Di Pietro PF, de Assis MAA, Hinnig PF. Association between sleep timing, being overweight and meal and snack consumption in children and adolescents in southern Brazil. Int J Environ Res Public Health. 2023;20(18) https://doi.org/10.3390/ijerph20186791.

  28. Robinson GA, Peng J, Peckham H, Radziszewska A, Butler G, Pineda-Torra I, et al. Sex hormones drive changes in lipoprotein metabolism. iScience. 2021;24(11):103257. https://doi.org/10.1016/j.isci.2021.103257.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen Z, Zhang X, Duan Y, Mo T, Liu W, Ma Y, et al. The relationship between sleep duration and blood lipids among chinese middle-aged and older adults: cross-lagged path analysis from CHARLS. Front Public Health. 2022;10:868059. https://doi.org/10.3389/fpubh.2022.868059.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Confortin SC, Aristizábal LYG, da Silva Magalhães EI, Barbosa AR, Ribeiro CCC, Batista RFL, et al. Association between sleep duration and cardiometabolic factors in adolescents. BMC Public Health. 2022;22(1):686. https://doi.org/10.1186/s12889-022-13119-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sung V, Beebe DW, Vandyke R, Fenchel MC, Crimmins NA, Kirk S, et al. Does sleep duration predict metabolic risk in obese adolescents attending tertiary services? A cross-sectional study. Sleep. 2011;34(7):891–8. https://doi.org/10.5665/sleep.1122.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen P, Baylin A, Lee J, Dunietz GL, Cantoral A, Tellez Rojo MM, et al. The association between sleep duration and sleep timing and insulin resistance among adolescents in Mexico City. J Adolesc Health. 2021;69(1):57–63. https://doi.org/10.1016/j.jadohealth.2020.10.012.

    Article  PubMed  Google Scholar 

  33. Bawadi H, Al Sada A, Al Mansoori N, Al Mannai S, Hamdan A, Shi Z, et al. Sleeping duration, napping and snoring in association with diabetes control among patients with diabetes in Qatar. Int J Environ Res Public Health. 2021;18(8) https://doi.org/10.3390/ijerph18084017.

  34. Tinajero MG, Malik VS. An update on the epidemiology of type 2 diabetes: a global perspective. Endocrinol Metab Clin North Am. 2021;50(3):337–55. https://doi.org/10.1016/j.ecl.2021.05.013.

    Article  PubMed  Google Scholar 

  35. •• Lee DY, Jung I, Park SY, Yu JH, Seo JA, Kim KJ, et al. Sleep duration and the risk of type 2 diabetes: a community-based cohort study with a 16-year follow-up. Endocrinol Metab (Seoul). 2023;38(1):146–55. https://doi.org/10.3803/EnM.2022.1582. Sleep deprivation was linked to an increased risk of T2DM, particularly among non-obese, younger individuals, and men. A significant interaction between sleep duration and obesity was also observed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet. 2017;389(10064):37–55. https://doi.org/10.1016/s0140-6736(16)31919-5.

    Article  Google Scholar 

  37. Bock JM, Vungarala S, Covassin N, Somers VK. Sleep duration and hypertension: epidemiological evidence and underlying mechanisms. Am J Hypertens. 2022;35(1):3–11. https://doi.org/10.1093/ajh/hpab146.

    Article  CAS  PubMed  Google Scholar 

  38. Chang X, Chen X, Ji JS, Luo G, Chen X, Sun Q, et al. Association between sleep duration and hypertension in southwest China: a population-based cross-sectional study. BMJ Open. 2022;12(6):e052193. https://doi.org/10.1136/bmjopen-2021-052193.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Altman NG, Izci-Balserak B, Schopfer E, Jackson N, Rattanaumpawan P, Gehrman PR, et al. Sleep duration versus sleep insufficiency as predictors of cardiometabolic health outcomes. Sleep Med. 2012;13(10):1261–70. https://doi.org/10.1016/j.sleep.2012.08.005.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Guasch-Ferre M, Li Y, Bhupathiraju SN, Huang T, Drouin-Chartier JP, Manson JE, et al. Healthy lifestyle score including sleep duration and cardiovascular disease risk. Am J Prev Med. 2022;63(1):33–42. https://doi.org/10.1016/j.amepre.2022.01.027.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pan Y, Zhou Y, Shi X, He S, Lai W. The association between sleep deprivation and the risk of cardiovascular diseases: a systematic meta-analysis. Biomed Rep. 2023;19(5):78. https://doi.org/10.3892/br.2023.1660.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Saz-Lara A, Luceron-Lucas-Torres M, Mesas AE, Notario-Pacheco B, Lopez-Gil JF, Cavero-Redondo I. Association between sleep duration and sleep quality with arterial stiffness: a systematic review and meta-analysis. Sleep Health. 2022;8(6):663–70. https://doi.org/10.1016/j.sleh.2022.07.001.

    Article  PubMed  Google Scholar 

  43. Huang T, Redline S. Cross-sectional and prospective associations of actigraphy-assessed sleep regularity with metabolic abnormalities: the multi-ethnic study of atherosclerosis. Diabetes Care. 2019;42(8):1422–9. https://doi.org/10.2337/dc19-0596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lunsford-Avery JR, Engelhard MM, Navar AM, Kollins SH. Validation of the sleep regularity index in older adults and associations with cardiometabolic risk. Sci Rep. 2018;8(1):14158. https://doi.org/10.1038/s41598-018-32402-5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. •• BaHammam AS, Pirzada A. Timing matters: the interplay between early mealtime, circadian rhythms, gene expression, circadian hormones, and metabolism—a narrative review. Clocks Sleep. 2023;5(3):507–35. https://doi.org/10.3390/clockssleep5030034. A recent comprehensive evidence-based review, highlighting that misalignments between the body’s natural clocks and eating patterns may increase the risk of metabolic disorders.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gilbey MP. Special issue, “Circadian rhythms: autonomic & endocrine function in health and disease”. Auton Neurosci. 2019;220:102562. https://doi.org/10.1016/j.autneu.2019.102562.

    Article  PubMed  Google Scholar 

  47. Slavish DC, Taylor DJ, Dietch JR, Wardle-Pinkston S, Messman B, Ruggero CJ, et al. Intraindividual variability in sleep and levels of systemic inflammation in nurses. Psychosom Med. 2020;82(7):678–88. https://doi.org/10.1097/psy.0000000000000843.

    Article  PubMed  PubMed Central  Google Scholar 

  48. • Girtman KL, Baylin A, O'Brien LM, Jansen EC. Later sleep timing and social jetlag are related to increased inflammation in a population with a high proportion of OSA: findings from the Cleveland Family Study. J Clin Sleep Med. 2022;18(9):2179–87. https://doi.org/10.5664/jcsm.10078. Later sleep schedules were correlated with elevated IL-6, while more pronounced social jetlag was tied to increased IL-1 levels, even after adjusting for OSA severity.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bei B, Seeman TE, Carroll JE, Wiley JF. Sleep and physiological dysregulation: a closer look at sleep intraindividual variability. Sleep. 2017;40(9) https://doi.org/10.1093/sleep/zsx109.

  50. Zhang C, Qin G. Irregular sleep and cardiometabolic risk: clinical evidence and mechanisms. Front Cardiovasc Med. 2023;10:1059257. https://doi.org/10.3389/fcvm.2023.1059257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. •• Windred DP, Burns AC, Lane JM, Saxena R, Rutter MK, Cain SW, et al. Sleep regularity is a stronger predictor of mortality risk than sleep duration: a prospective cohort study. Sleep. 2023; https://doi.org/10.1093/sleep/zsad253. A prospective cohort study using data from over 60,000 UK Biobank participants found that sleep regularity is a more potent predictor of mortality risk than sleep duration, linking higher sleep regularity with significantly lower risks of all-cause, cancer, and cardiometabolic mortality.

  52. Abbott SM, Weng J, Reid KJ, Daviglus ML, Gallo LC, Loredo JS, et al. Sleep timing, stability, and BP in the Sueño Ancillary Study of the Hispanic Community Health Study/Study of Latinos. Chest. 2019;155(1):60–8. https://doi.org/10.1016/j.chest.2018.09.018.

    Article  PubMed  Google Scholar 

  53. Häusler N, Marques-Vidal P, Haba-Rubio J, Heinzer R. Association between actigraphy-based sleep duration variability and cardiovascular risk factors — results of a population-based study. Sleep Med. 2020;66:286–90. https://doi.org/10.1016/j.sleep.2019.02.008.

    Article  PubMed  Google Scholar 

  54. Mota MC, Silva CM, Balieiro LCT, Fahmy WM, Marqueze EC, Moreno CRC, et al. Social jetlag is associated with impaired metabolic control during a 1-year follow-up. Front Physiol. 2021;12:702769. https://doi.org/10.3389/fphys.2021.702769.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mokhlesi B, Temple KA, Tjaden AH, Edelstein SL, Utzschneider KM, Nadeau KJ, et al. Association of self-reported sleep and circadian measures with glycemia in adults with prediabetes or recently diagnosed untreated type 2 diabetes. Diabetes Care. 2019;42(7):1326–32. https://doi.org/10.2337/dc19-0298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cespedes Feliciano EM, Rifas-Shiman SL, Quante M, Redline S, Oken E, Taveras EM. Chronotype, social jet lag, and cardiometabolic risk factors in early adolescence. JAMA Pediatr. 2019;173(11):1049–57. https://doi.org/10.1001/jamapediatrics.2019.3089.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Johnson DA, Reid M, Vu TT, Gallo LC, Daviglus ML, Isasi CR, et al. Associations of sleep duration and social jetlag with cardiometabolic risk factors in the study of Latino youth. Sleep Health. 2020;6(5):563–9. https://doi.org/10.1016/j.sleh.2020.02.017.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rosique-Esteban N, Papandreou C, Romaguera D, Warnberg J, Corella D, Martínez-González M, et al. Cross-sectional associations of objectively-measured sleep characteristics with obesity and type 2 diabetes in the PREDIMED-Plus trial. Sleep. 2018;41(12) https://doi.org/10.1093/sleep/zsy190.

  59. Soltero EG, Navabi N, Vander Wyst KB, Hernandez E, Castro FG, Ayers SL, et al. Examining 24-hour activity and sleep behaviors and related determinants in Latino adolescents and young adults with obesity. Health Educ Behav. 2022;49(2):291–303. https://doi.org/10.1177/10901981211054789.

    Article  PubMed  Google Scholar 

  60. Kelly RM, Healy U, Sreenan S, McDermott J, Coogan AN. An exploratory study of associations between sleep timing variability and cardiometabolic health in middle-aged adults with type 2 diabetes mellitus. Chronobiol Int. 2022;39(4):569–78. https://doi.org/10.1080/07420528.2021.2005083.

    Article  PubMed  Google Scholar 

  61. Fritz J, Phillips AJK, Hunt LC, Imam A, Reid KJ, Perreira KM, et al. Cross-sectional and prospective associations between sleep regularity and metabolic health in the Hispanic Community Health Study/Study of Latinos. Sleep. 2021;44(4) https://doi.org/10.1093/sleep/zsaa218.

  62. Saylor J, Ji X, Calamaro CJ, Davey A. Does sleep duration, napping, and social jetlag predict hemoglobin A1c among college students with type 1 diabetes mellitus? Diabetes Res Clin Pract. 2019;148:102–9. https://doi.org/10.1016/j.diabres.2019.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim JH, Lyu YS, Kim SY. Impact of social jetlag on weight change in adults: Korean National Health and Nutrition Examination Survey 2016–2017. Int J Environ Res Public Health. 2020;17(12) https://doi.org/10.3390/ijerph17124383.

  64. Hawkins MS, Levine MD, Buysse DJ, Abebe KZ, Hsiao WH, McTigue KM, et al. Sleep health characteristics among adults who attempted weight loss in the past year: NHANES 2017–2018. Int J Environ Res Public Health. 2021;18(19) https://doi.org/10.3390/ijerph181910170.

  65. LeMay-Russell S, Schvey NA, Kelly NR, Parker MN, Ramirez E, Shank LM, et al. Longitudinal associations between facets of sleep and adiposity in youth. Obesity (Silver Spring). 2021;29(11):1760–9. https://doi.org/10.1002/oby.23281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. • Morales-Ghinaglia N, He F, Calhoun SL, Vgontzas AN, Liao J, Liao D, et al. Circadian misalignment impacts the association of visceral adiposity with metabolic syndrome burden in adolescents. Sleep. 2023; https://doi.org/10.1093/sleep/zsad262. The study emphasizes that circadian misalignment amplifies the effects of visceral obesity on cardiometabolic health, highlighting the importance of targeting it in preventative strategies for adolescents.

  67. Papandreou C, Bulló M, Díaz-López A, Martínez-González MA, Corella D, Castañer O, et al. High sleep variability predicts a blunted weight loss response and short sleep duration a reduced decrease in waist circumference in the PREDIMED-Plus Trial. Int J Obes (Lond). 2020;44(2):330–9. https://doi.org/10.1038/s41366-019-0401-5.

    Article  PubMed  Google Scholar 

  68. Bowman MA, Brindle RC, Joffe H, Kline CE, Buysse DJ, Appelhans BM, et al. Multidimensional sleep health is not cross-sectionally or longitudinally associated with adiposity in the Study of Women’s Health Across the Nation (SWAN). Sleep Health. 2020;6(6):790–6. https://doi.org/10.1016/j.sleh.2020.04.014.

    Article  PubMed  Google Scholar 

  69. • Huang T, Mariani S, Redline S. Sleep irregularity and risk of cardiovascular events: the multi-ethnic study of atherosclerosis. J Am Coll Cardiol. 2020;75(9):991–9. https://doi.org/10.1016/j.jacc.2019.12.054. The findings from this study emphasize the potential cardiovascular implications of inconsistent sleep schedules.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Arredondo E, Udeani G, Panahi L, Taweesedt PT, Surani S. Obstructive sleep apnea in adults: what primary care physicians need to know. Cureus. 2021;13(9):e17843. https://doi.org/10.7759/cureus.17843.

    Article  PubMed  PubMed Central  Google Scholar 

  71. André S, Andreozzi F, Van Overstraeten C, Ben Youssef S, Bold I, Carlier S, et al. Cardiometabolic comorbidities in obstructive sleep apnea patients are related to disease severity, nocturnal hypoxemia, and decreased sleep quality. Respir Res. 2020;21(1):35. https://doi.org/10.1186/s12931-020-1284-7.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Tietjens JR, Claman D, Kezirian EJ, De Marco T, Mirzayan A, Sadroonri B, et al. Obstructive sleep apnea in cardiovascular disease: a review of the literature and proposed multidisciplinary clinical management strategy. J Am Heart Assoc. 2019;8(1):e010440. https://doi.org/10.1161/jaha.118.010440.

    Article  CAS  PubMed  Google Scholar 

  73. Martinez-Garcia MA, Sanchez-de-la-Torre M, White DP, Azarbarzin A. Hypoxic burden in obstructive sleep apnea: present and future. Arch Bronconeumol. 2023;59(1):36–43. https://doi.org/10.1016/j.arbres.2022.08.005.

    Article  PubMed  Google Scholar 

  74. •• Azarbarzin A, Sands SA, Stone KL, Taranto-Montemurro L, Messineo L, Terrill PI, et al. The hypoxic burden of sleep apnoea predicts cardiovascular disease-related mortality: the Osteoporotic Fractures in Men Study and the Sleep Heart Health Study. Eur Heart J. 2019;40(14):1149–57. https://doi.org/10.1093/eurheartj/ehy624. ‘Hypoxic burden’, a measure derived from overnight sleep studies, is a strong predictor of CVD mortality across populations, suggesting that the depth and duration of sleep-related upper airway obstructions are important characteristics of the disease.

    Article  PubMed  Google Scholar 

  75. •• Trzepizur W, Blanchard M, Ganem T, Balusson F, Feuilloy M, Girault JM, et al. Sleep apnea-specific hypoxic burden, symptom subtypes, and risk of cardiovascular events and all-cause mortality. Am J Respir Crit Care Med. 2022;205(1):108–17. https://doi.org/10.1164/rccm.202105-1274OC. Patients with elevated OSA-specific HB are at higher risk of a cardiovascular event and all-cause mortality.

    Article  PubMed  Google Scholar 

  76. •• Xu PH, Fong DYT, Lui MMS, Lam DCL, Ip MSM. Cardiovascular outcomes in obstructive sleep apnoea and implications of clinical phenotyping on effect of CPAP treatment. Thorax. 2023;78(1):76–84. https://doi.org/10.1136/thoraxjnl-2021-217714. The study found that sleep time with TST90 and mean heart rate, but not the AHI, were robust predictors of MACEs.

    Article  PubMed  Google Scholar 

  77. • Sanchez-de-la-Torre M, Sanchez-de-la-Torre A, Bertran S, Abad J, Duran-Cantolla J, Cabriada V, et al. Effect of obstructive sleep apnoea and its treatment with continuous positive airway pressure on the prevalence of cardiovascular events in patients with acute coronary syndrome (ISAACC study): a randomised controlled trial. Lancet Respir Med. 2020;8(4):359–67. https://doi.org/10.1016/S2213-2600(19)30271-1. Among non-sleepy patients with acute coronary syndrome, the presence of OSA was not associated with an increased prevalence of cardiovascular events, and treatment with CPAP did not significantly reduce this prevalence.

    Article  PubMed  Google Scholar 

  78. Siddiquee AT, Kim S, Thomas RJ, Lee MH, Ku Lee S, Shin C. Obstructive sleep apnoea and long-term risk of incident diabetes in the middle-aged and older general population. ERJ Open Res. 2023;9(2) https://doi.org/10.1183/23120541.00401-2022.

  79. • Bajpai J, Pradhan A, Bajaj D, Verma AK, Kant S, Pandey AK, et al. Prevalence of dyslipidaemia in OSA patients at a tertiary care center. Am J Cardiovasc Dis. 2023;13(1):1–9. Patients with OSA had a higher prevalence of dyslipidemia, with lipid abnormalities increasing with OSA severity.

    PubMed  PubMed Central  Google Scholar 

  80. Xu PH, Hui CKM, Lui MMS, Lam DCL, Fong DYT, Ip MSM. Incident type 2 diabetes in OSA and effect of CPAP treatment: a retrospective clinic cohort study. Chest. 2019;156(4):743–53. https://doi.org/10.1016/j.chest.2019.04.130.

    Article  PubMed  Google Scholar 

  81. Gaines J, Vgontzas AN, Fernandez-Mendoza J, Bixler EO. Obstructive sleep apnea and the metabolic syndrome: the road to clinically-meaningful phenotyping, improved prognosis, and personalized treatment. Sleep Med Rev. 2018;42:211–9. https://doi.org/10.1016/j.smrv.2018.08.009.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Liu L, Su X, Zhao Z, Han J, Li J, Xu W, et al. Association of metabolic syndrome with long-term cardiovascular risks and all-cause mortality in elderly patients with obstructive sleep apnea. Front Cardiovasc Med. 2021;8:813280. https://doi.org/10.3389/fcvm.2021.813280.

    Article  PubMed  Google Scholar 

  83. Song SO, He K, Narla RR, Kang HG, Ryu HU, Boyko EJ. Metabolic consequences of obstructive sleep apnea especially pertaining to diabetes mellitus and insulin sensitivity. Diabetes Metab J. 2019;43(2):144–55. https://doi.org/10.4093/dmj.2018.0256.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kim DH, Kim B, Han K, Kim SW. The relationship between metabolic syndrome and obstructive sleep apnea syndrome: a nationwide population-based study. Sci Rep. 2021;11(1):8751. https://doi.org/10.1038/s41598-021-88233-4.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yeghiazarians Y, Jneid H, Tietjens JR, Redline S, Brown DL, El-Sherif N, et al. Obstructive sleep apnea and cardiovascular disease: a scientific statement From the American Heart Association. Circulation. 2021;144(3):e56–67. https://doi.org/10.1161/cir.0000000000000988.

    Article  CAS  PubMed  Google Scholar 

  86. Patel AR, Patel AR, Singh S, Singh S, Khawaja I. The association of obstructive sleep apnea and hypertension. Cureus. 2019;11(6):e4858. https://doi.org/10.7759/cureus.4858.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zou D, Grote L, Basoglu OK, Verbraecken J, Schiza S, Sliwinski P, et al. Arterial bicarbonate is associated with hypoxic burden and uncontrolled hypertension in obstructive sleep apnea — the ESADA cohort. Sleep Med. 2023;102:39–45. https://doi.org/10.1016/j.sleep.2022.11.041.

    Article  PubMed  Google Scholar 

  88. Liu L, Cao Q, Guo Z, Dai Q. Continuous positive airway pressure in patients with obstructive sleep apnea and resistant hypertension: a meta-analysis of randomized controlled trials. J Clin Hypertens (Greenwich). 2016;18(2):153–8. https://doi.org/10.1111/jch.12639.

    Article  PubMed  Google Scholar 

  89. Ou YH, Tan A, Lee CH. Management of hypertension in obstructive sleep apnea. Am J Prev Cardiol. 2023;13:100475. https://doi.org/10.1016/j.ajpc.2023.100475.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Li YE, Ren J. Association between obstructive sleep apnea and cardiovascular diseases. Acta Biochim Biophys Sin (Shanghai). 2022;54(7):882–92. https://doi.org/10.3724/abbs.2022084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. • Svedmyr S, Hedner J, Bonsignore MR, Lombardi C, Parati G, Ludka O, et al. Hypertension treatment in patients with sleep apnea from the European Sleep Apnea Database (ESADA) cohort — towards precision medicine. J Sleep Res. 2023;32(4):e13811. https://doi.org/10.1111/jsr.13811. The study suggests that specific clinical characteristics and the type of antihypertensive medication influence the degree of blood pressure control in hypertensive OSA patients.

    Article  PubMed  Google Scholar 

  92. •• Sanchez-de-la-Torre M, Gracia-Lavedan E, Benitez ID, Zapater A, Torres G, Sanchez-de-la-Torre A, et al. Long-term effect of obstructive sleep apnea and continuous positive airway pressure treatment on blood pressure in patients with acute coronary syndrome: a clinical trial. Ann Am Thorac Soc. 2022;19(10):1750–9. https://doi.org/10.1513/AnnalsATS.202203-260OC. In patients with ACS, severe OSA is associated with a long-term increase in blood pressure. However, this increase can be reduced by good adherence to CPAP treatment.

    Article  PubMed  Google Scholar 

  93. Bandi PS, Panigrahy PK, Hajeebu S, Ngembus NJ, Heindl SE. Pathophysiological mechanisms to review association of atrial fibrillation in heart failure with obstructive sleep apnea. Cureus. 2021;13(7):e16086. https://doi.org/10.7759/cureus.16086.

    Article  PubMed  PubMed Central  Google Scholar 

  94. • Polecka A, Olszewska N, Danielski Ł, Olszewska E. Association between obstructive sleep apnea and heart failure in adults—a systematic review. J Clin Med. 2023;12(19) https://doi.org/10.3390/jcm12196139. It explores the prevalence of OSA in heart failure patients, the role of positive airway pressure in these patients, and the impact of new medications in heart failure pharmacotherapy on sleep-disordered breathing patients.

  95. Varghese MJ, Sharma G, Shukla G, Seth S, Mishra S, Gupta A, et al. Longitudinal ventricular systolic dysfunction in patients with very severe obstructive sleep apnea: a case control study using speckle tracking imaging. Indian Heart J. 2017;69(3):305–10. https://doi.org/10.1016/j.ihj.2016.12.011.

    Article  PubMed  Google Scholar 

  96. Chen L, Zadi ZH, Zhang J, Scharf SM, Pae EK. Intermittent hypoxia in utero damages postnatal growth and cardiovascular function in rats. J Appl Physiol (1985). 2018;124(4):821–30. https://doi.org/10.1152/japplphysiol.01066.2016.

    Article  CAS  PubMed  Google Scholar 

  97. Holt A, Bjerre J, Zareini B, Koch H, Tønnesen P, Gislason GH, et al. Sleep Apnea, the risk of developing heart failure, and potential benefits of continuous positive airway pressure (CPAP) Therapy. J Am Heart Assoc. 2018;7(13) https://doi.org/10.1161/jaha.118.008684.

  98. Zhang D, Ma Y, Xu J, Yi F. Association between obstructive sleep apnea (OSA) and atrial fibrillation (AF): a dose-response meta-analysis. Medicine (Baltimore). 2022;101(30):e29443. https://doi.org/10.1097/md.0000000000029443.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Saleeb-Mousa J, Nathanael D, Coney AM, Kalla M, Brain KL, Holmes AP. Mechanisms of atrial fibrillation in obstructive sleep apnoea. Cells. 2023;12(12) https://doi.org/10.3390/cells12121661.

  100. Moula AI, Parrini I, Tetta C, Luca F, Parise G, Rao CM, et al. Obstructive sleep apnea and atrial fibrillation. J Clin Med. 2022;11(5) https://doi.org/10.3390/jcm11051242.

  101. • Li X, Zhou X, Xu X, Dai J, Chen C, Ma L, et al. Effects of continuous positive airway pressure treatment in obstructive sleep apnea patients with atrial fibrillation: a meta-analysis. Medicine (Baltimore). 2021;100(15):e25438. https://doi.org/10.1097/MD.0000000000025438. It demonstrates that the recurrence of AF in OSA patients who were treated with CPAP was lower than in those who did not receive CPAP treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hunt TE, Traaen GM, Aakeroy L, Bendz C, Overland B, Akre H, et al. Effect of continuous positive airway pressure therapy on recurrence of atrial fibrillation after pulmonary vein isolation in patients with obstructive sleep apnea: a randomized controlled trial. Heart Rhythm. 2022;19(9):1433–41. https://doi.org/10.1016/j.hrthm.2022.06.016.

    Article  PubMed  Google Scholar 

  103. Kosacka M, Brzecka A. Endothelin-1 and LOX-1 as markers of endothelial dysfunction in obstructive sleep apnea patients. Int J Environ Res Public Health. 2021;18(3) https://doi.org/10.3390/ijerph18031319.

  104. O’Donnell C, O’Mahony AM, McNicholas WT, Ryan S. Cardiovascular manifestations in obstructive sleep apnea: current evidence and potential mechanisms. Pol. Arch Intern Med. 2021;131(6):550–60. https://doi.org/10.20452/pamw.16041.

    Article  Google Scholar 

  105. • Peker Y, Akdeniz B, Altay S, Balcan B, Başaran Ö, Baysal E, et al. Obstructive sleep apnea and cardiovascular disease: where do we stand? Anatol J Cardiol. 2023;27(7):375–89. https://doi.org/10.14744/AnatolJCardiol.2023.3307. A a comprehensive review of the current understanding of the relationship between OSA and CVD, discussing the underlying mechanisms, clinical implications, and potential treatment strategies.

    Article  PubMed  PubMed Central  Google Scholar 

  106. •• Wang G, Miao H, Hao W, Zhao G, Yan Y, Gong W, et al. Association of obstructive sleep apnoea with long-term cardiovascular events in patients with acute coronary syndrome with or without hypertension: insight from the OSA-ACS project. BMJ Open Respir Res. 2023;10(1) https://doi.org/10.1136/bmjresp-2023-001662. OSA was associated with an increased risk of major adverse cardiovascular and cerebrovascular events in patients with ACS and hypertension, particularly in those with pre-existing severe hypertension.

  107. Peker Y, Glantz H, Eulenburg C, Wegscheider K, Herlitz J, Thunström E. Effect of positive airway pressure on cardiovascular outcomes in coronary artery disease patients with nonsleepy obstructive sleep apnea. The RICCADSA Randomized Controlled Trial. Am J Respir Crit Care Med. 2016;194(5):613–20. https://doi.org/10.1164/rccm.201601-0088OC.

    Article  CAS  PubMed  Google Scholar 

  108. Chetan IM, Maierean AD, Domokos Gergely B, Cabau G, Tomoaia R, Chis AF, et al. A prospective study of CPAP therapy in relation to cardiovascular outcome in a cohort of romanian obstructive sleep apnea patients. J Pers Med. 2021;11(10) https://doi.org/10.3390/jpm11101001.

  109. Navarro-Soriano C, Martinez-Garcia MA, Torres G, Barbe F, Sanchez-de-la-Torre M, Caballero-Eraso C, et al. Long-term effect of CPAP treatment on cardiovascular events in patients with resistant hypertension and sleep apnea. Data from the HIPARCO-2 Study. Arch Bronconeumol (Engl Ed). 2021;57(3):165–71. https://doi.org/10.1016/j.arbres.2019.12.006.

    Article  PubMed  Google Scholar 

  110. Wang X, Zhang Y, Dong Z, Fan J, Nie S, Wei Y. Effect of continuous positive airway pressure on long-term cardiovascular outcomes in patients with coronary artery disease and obstructive sleep apnea: a systematic review and meta-analysis. Respir Res. 2018;19(1):61. https://doi.org/10.1186/s12931-018-0761-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. • Redline S, Azarbarzin A, Peker Y. Obstructive sleep apnoea heterogeneity and cardiovascular disease. Nat Rev Cardiol. 2023;20(8):560–73. https://doi.org/10.1038/s41569-023-00846-6. A comprehensive review that emphasizes the heterogeneity of OSA, discussing the varied mechanistic pathways that result in CVD across different subgroups of OSA, and highlights the potential role of new biomarkers for CVD risk stratification.

    Article  CAS  PubMed  Google Scholar 

  112. Bahammam AS, Pandi-Perumal SR, Spence DW, Moscovitch A, Streiner DL. The SAVE trial: has the importance of CPAP for preventing cardiovascular events been discounted? Sleep Vigil. 2017;1(1):47–8. https://doi.org/10.1007/s41782-017-0003-z.

    Article  Google Scholar 

  113. • Pirzada AR, AS BH. Rapid eye movement predominant obstructive sleep apnoea: prognostic relevance and clinical approach. Curr Opin Pulm Med. 2021;27(6):514–22. https://doi.org/10.1097/MCP.0000000000000817. It highlights that REM-OSA is independently associated with cardiometabolic complications, particularly hypertension, metabolic complications such as insulin resistance, and metabolic syndrome. However, there is currently no consensus on the accepted diagnostic criteria for REM-OSA.

    Article  CAS  PubMed  Google Scholar 

  114. BaHammam AS, Alshahrani M, Aleissi SA, Olaish AH, Alhassoon MH, Shukr A. Blood pressure dipping during REM and non-REM sleep in patients with moderate to severe obstructive sleep apnea. Sci Rep. 2021;11(1):7990. https://doi.org/10.1038/s41598-021-87200-3.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  115. Drager LF, McEvoy RD, Barbe F, Lorenzi-Filho G, Redline S, Initiative I. Sleep apnea and cardiovascular disease: lessons from recent trials and need for team science. Circulation. 2017;136(19):1840–50. https://doi.org/10.1161/CIRCULATIONAHA.117.029400.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Cardoso CRL, Salles GF. Prognostic importance of obstructive sleep apnea and CPAP treatment for cardiovascular and mortality outcomes in patients with resistant hypertension: a prospective cohort study. Hypertens Res. 2023;46(4):1020–30. https://doi.org/10.1038/s41440-023-01193-2.

    Article  PubMed  Google Scholar 

  117. Manuel Sanchez De La T, Esther G-L, Ivan DB, Alicia S-D-L-T, Anna M-M, Gerard T, et al. Adherence to CPAP treatment is associated with a decrease in the incidence of cardiovascular events: an individual participant data meta-analysis. European Respiratory Journal. 2023;62(suppl 67):OA3292. https://doi.org/10.1183/13993003.congress-2023.OA3292.

    Article  Google Scholar 

  118. • Sharafkhaneh A, Agrawal R, Nambi V, BaHammam A, Razjouyan J. Obesity paradox or hypoxia preconditioning: how obstructive sleep apnea modifies the obesity-MI relationship. Sleep Med. 2023;110:132–6. https://doi.org/10.1016/j.sleep.2023.07.035. It suggests that the association between obesity and improved survival in acute MI is largely driven by the presence of OSA.

    Article  PubMed  Google Scholar 

  119. Agrawal R, Sharafkhaneh A, Nambi V, BaHammam A, Razjouyan J. Obstructive sleep apnea modulates clinical outcomes post-acute myocardial infarction: a large longitudinal veterans’ dataset report. Respir Med. 2023;211:107214. https://doi.org/10.1016/j.rmed.2023.107214.

    Article  PubMed  Google Scholar 

  120. Kalmbach DA, Anderson JR, Drake CL. The impact of stress on sleep: pathogenic sleep reactivity as a vulnerability to insomnia and circadian disorders. J Sleep Res. 2018;27(6):e12710. https://doi.org/10.1111/jsr.12710.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Jarrin DC, Alvaro PK, Bouchard MA, Jarrin SD, Drake CL, Morin CM. Insomnia and hypertension: a systematic review. Sleep Med Rev. 2018;41:3–38. https://doi.org/10.1016/j.smrv.2018.02.003.

    Article  PubMed  Google Scholar 

  122. Patel D, Steinberg J, Patel P. Insomnia in the elderly: a review. J Clin Sleep Med. 2018;14(6):1017–24. https://doi.org/10.5664/jcsm.7172.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Chapman JL, Comas M, Hoyos CM, Bartlett DJ, Grunstein RR, Gordon CJ. Is metabolic rate increased in insomnia disorder? A systematic review. Front Endocrinol (Lausanne). 2018;9:374. https://doi.org/10.3389/fendo.2018.00374.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Javaheri S, Redline S. Insomnia and risk of cardiovascular disease. Chest. 2017;152(2):435–44. https://doi.org/10.1016/j.chest.2017.01.026.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Jansen PR, Watanabe K, Stringer S, Skene N, Bryois J, Hammerschlag AR, et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat Genet. 2019;51(3):394–403. https://doi.org/10.1038/s41588-018-0333-3.

    Article  CAS  PubMed  Google Scholar 

  126. Liao LZ, Li WD, Liu Y, Li JP, Zhuang XD, Liao XX. Causal assessment of sleep on coronary heart disease. Sleep Med. 2020;67:232–6. https://doi.org/10.1016/j.sleep.2019.08.014.

    Article  PubMed  Google Scholar 

  127. Gaffey AE, Rosman L, Lampert R, Yaggi HK, Haskell SG, Brandt CA, et al. Insomnia and early incident atrial fibrillation: a 16-year cohort study of younger men and women veterans. J Am Heart Assoc. 2023;12(20):e030331. https://doi.org/10.1161/jaha.123.030331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Thomas SJ, Calhoun D. Sleep, insomnia, and hypertension: current findings and future directions. J Am Soc Hypertens. 2017;11(2):122–9. https://doi.org/10.1016/j.jash.2016.11.008.

    Article  PubMed  Google Scholar 

  129. Shivashankar R, Kondal D, Ali MK, Gupta R, Pradeepa R, Mohan V, et al. Associations of sleep duration and disturbances with hypertension in metropolitan cities of Delhi, Chennai, and Karachi in South Asia: cross-sectional analysis of the CARRS study. Sleep. 2017;40(9) https://doi.org/10.1093/sleep/zsx119.

  130. Wang YM, Song M, Wang R, Shi L, He J, Fan TT, et al. Insomnia and multimorbidity in the community elderly in China. J Clin Sleep Med. 2017;13(4):591–7. https://doi.org/10.5664/jcsm.6550.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Clark AJ, Salo P, Lange T, Jennum P, Virtanen M, Pentti J, et al. Onset of impaired sleep and cardiovascular disease risk factors: a longitudinal study. Sleep. 2016;39(9):1709–18. https://doi.org/10.5665/sleep.6098.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lin CL, Liu TC, Lin FH, Chung CH, Chien WC. Association between sleep disorders and hypertension in Taiwan: a nationwide population-based retrospective cohort study. J Hum Hypertens. 2017;31(3):220–4. https://doi.org/10.1038/jhh.2016.55.

    Article  PubMed  Google Scholar 

  133. • Grandner M, Olivieri A, Ahuja A, Busser A, Freidank M, McCall WV. The burden of untreated insomnia disorder in a sample of 1 million adults: a cohort study. BMC Public Health. 2023;23(1):1481. https://doi.org/10.1186/s12889-023-16329-9. The findings confirm the substantial burden of insomnia disorder on patients, with significant daytime impairment and numerous comorbidities, reinforcing the need for timely insomnia disorder diagnosis and treatments that improve both sleep and daytime functioning.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Meng L, Zheng Y, Hui R. The relationship of sleep duration and insomnia to risk of hypertension incidence: a meta-analysis of prospective cohort studies. Hypertens Res. 2013;36(11):985–95. https://doi.org/10.1038/hr.2013.70.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Li L, Gan Y, Zhou X, Jiang H, Zhao Y, Tian Q, et al. Insomnia and the risk of hypertension: a meta-analysis of prospective cohort studies. Sleep Med Rev. 2021;56:101403. https://doi.org/10.1016/j.smrv.2020.101403.

    Article  PubMed  Google Scholar 

  136. •• Ali E, Shaikh A, Yasmin F, Sughra F, Sheikh A, Owais R, et al. Incidence of adverse cardiovascular events in patients with insomnia: a systematic review and meta-analysis of real-world data. PLoS One. 2023;18(9):e0291859. https://doi.org/10.1371/journal.pone.0291859. It reveals that individuals with insomnia have a higher risk of long-term mortality, myocardial infarction, and incidence of cardiovascular disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kalmbach DA, Pillai V, Arnedt JT, Drake CL. DSM-5 insomnia and short sleep: comorbidity landscape and racial disparities. Sleep. 2016;39(12):2101–11. https://doi.org/10.5665/sleep.6306.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Anothaisintawee T, Reutrakul S, Van Cauter E, Thakkinstian A. Sleep disturbances compared to traditional risk factors for diabetes development: systematic review and meta-analysis. Sleep Med Rev. 2016;30:11–24. https://doi.org/10.1016/j.smrv.2015.10.002.

    Article  PubMed  Google Scholar 

  139. Cespedes EM, Dudley KA, Sotres-Alvarez D, Zee PC, Daviglus ML, Shah NA, et al. Joint associations of insomnia and sleep duration with prevalent diabetes: the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). J Diabetes. 2016;8(3):387–97. https://doi.org/10.1111/1753-0407.12308.

    Article  PubMed  Google Scholar 

  140. Zhang Y, Jiang X, Liu J, Lang Y, Liu Y. The association between insomnia and the risk of metabolic syndrome: a systematic review and meta-analysis. J Clin Neurosci. 2021;89:430–6. https://doi.org/10.1016/j.jocn.2021.05.039.

    Article  PubMed  Google Scholar 

  141. Liu X, Li C, Sun X, Yu Y, Si S, Hou L, et al. Genetically predicted insomnia in relation to 14 cardiovascular conditions and 17 cardiometabolic risk factors: a Mendelian randomization study. J Am Heart Assoc. 2021;10(15):e020187. https://doi.org/10.1161/jaha.120.020187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. •• Laaboub N, Dubath C, Ranjbar S, Sibailly G, Grosu C, Piras M, et al. Insomnia disorders are associated with increased cardiometabolic disturbances and death risks from cardiovascular diseases in psychiatric patients treated with weight-gain-inducing psychotropic drugs: results from a Swiss cohort. BMC Psychiatry. 2022;22(1):342. https://doi.org/10.1186/s12888-022-03983-3. Insomnia disorders are significantly associated with metabolic worsening and an increased risk of death from cardiovascular diseases in psychiatric patients treated with weight-gain-inducing psychotropic drugs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. •• Brostrom A, Alimoradi Z, Lind J, Ulander M, Lundin F, Pakpour A. Worldwide estimation of restless legs syndrome: a systematic review and meta-analysis of prevalence in the general adult population. J Sleep Res. 2023;32(3):e13783. https://doi.org/10.1111/jsr.13783. A comprehensive worldwide assessment of the prevalence of restless legs syndrome (RLS) in the general adult population, finding a corrected overall pooled prevalence of 3%.

    Article  PubMed  Google Scholar 

  144. Tang M, Sun Q, Zhang Y, Li H, Wang D, Wang Y, et al. Circadian rhythm in restless legs syndrome. Front Neurol. 2023;14:1105463. https://doi.org/10.3389/fneur.2023.1105463.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Trenkwalder C, Allen R, Högl B, Paulus W, Winkelmann J. Restless legs syndrome associated with major diseases: a systematic review and new concept. Neurology. 2016;86(14):1336–43. https://doi.org/10.1212/wnl.0000000000002542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. De Berardis D, Ricci V, Mazza M, Ullah I, Amerio A, Martinotti G. Commentary: increased risk of cardiovascular disease in restless legs syndrome patients: a call to action. Alpha Psychiatry. 2023;24(3):100–1. https://doi.org/10.5152/alphapsychiatry.2023.160523.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Abuş S, Kapıcı Y, Ayhan S, Arık A. Elevated cardiovascular disease risk in patients with restless legs syndrome. Alpha Psychiatry. 2023;24(3):95–9. https://doi.org/10.5152/alphapsychiatry.2023.221043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Katsanos AH, Kosmidou M, Konitsiotis S, Tsivgoulis G, Fiolaki A, Kyritsis AP, et al. Restless legs syndrome and cerebrovascular/cardiovascular events: systematic review and meta-analysis. Acta Neurol Scand. 2018;137(1):142–8. https://doi.org/10.1111/ane.12848.

    Article  CAS  PubMed  Google Scholar 

  149. Bellei E, Bergamini S, Monari E, Tomasi A, Koseoglu M, Topaloglu Tuac S, et al. Evaluation of potential cardiovascular risk protein biomarkers in high severity restless legs syndrome. J Neural Transm (Vienna). 2019;126(10):1313–20. https://doi.org/10.1007/s00702-019-02051-7.

    Article  CAS  PubMed  Google Scholar 

  150. Bertisch SM, Muresan C, Schoerning L, Winkelman JW, Taylor JA. Impact of restless legs syndrome on cardiovascular autonomic control. Sleep. 2016;39(3):565–71. https://doi.org/10.5665/sleep.5528.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Li Y, Li Y, Winkelman JW, Walters AS, Han J, Hu FB, et al. Prospective study of restless legs syndrome and total and cardiovascular mortality among women. Neurology. 2018;90(2):e135–e41. https://doi.org/10.1212/wnl.0000000000004814.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Winkelman JW, Blackwell T, Stone K, Ancoli-Israel S, Redline S. Associations of incident cardiovascular events with restless legs syndrome and periodic leg movements of sleep in older men, for the outcomes of sleep disorders in older men study (MrOS Sleep Study). Sleep. 2017;40(4) https://doi.org/10.1093/sleep/zsx023.

  153. Kendzerska T, Kamra M, Murray BJ, Boulos MI. Incident cardiovascular events and death in individuals with restless legs syndrome or periodic limb movements in sleep: a systematic review. Sleep. 2017;40(3) https://doi.org/10.1093/sleep/zsx013.

  154. Doan TT, Koo BB, Ogilvie RP, Redline S, Lutsey PL. Restless legs syndrome and periodic limb movements during sleep in the Multi-Ethnic Study of Atherosclerosis. Sleep. 2018;41(8) https://doi.org/10.1093/sleep/zsy106.

  155. •• Srivali N, Thongprayoon C, Tangpanithandee S, Krisanapan P, Mao MA, Zinchuk A, et al. Periodic limb movements during sleep and risk of hypertension: a systematic review. Sleep Med. 2023;102:173–9. https://doi.org/10.1016/j.sleep.2023.01.008. The pooled risk ratio of hypertension in patients with PLMS was 1.26, indicating an increased risk of hypertension among patients with PLMS.

    Article  PubMed  PubMed Central  Google Scholar 

  156. • Gao X, Ba DM, Bagai K, Liu G, Ma C, Walters AS. Treating restless legs syndrome was associated with low risk of cardiovascular disease: a cohort study with 3.4 years of follow-up. J Am Heart Assoc. 2021;10(4):e018674. https://doi.org/10.1161/jaha.120.018674. RLS was associated with a higher future CVD risk, RLS patients who received treatment had a statistically significantly lower future cardiovascular risk than those without treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Support was provided by The Strategic Technologies Program of the National Plan for Sciences and Technology and Innovation in the Kingdom of Saudi Arabia (MED511-02-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed S. BaHammam.

Ethics declarations

Conflict of Interest

Shaden O. Qasrawi and Ahmed S. BaHammam declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasrawi, S.O., BaHammam, A.S. Role of Sleep and Sleep Disorders in Cardiometabolic Risk: a Review and Update. Curr Sleep Medicine Rep 10, 34–50 (2024). https://doi.org/10.1007/s40675-024-00276-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40675-024-00276-x

Keywords

Navigation