Skip to main content

Advertisement

Log in

The Role of Vascular Imaging to Advance Clinical Care and Research in Large-Vessel Vasculitis

  • Vasculitis (L Barra, Section Editor)
  • Published:
Current Treatment Options in Rheumatology Aims and scope Submit manuscript

Abstract

Purpose of the review

The two main forms of large-vessel vasculitis (LVV) are giant cell arteritis (GCA) and Takayasu’s arteritis (TAK). Vascular imaging can characterize disease activity and disease extent in LVV. This review critically analyzes the clinical utility of vascular imaging in LVV and highlights how imaging may be incorporated into the management and study of these conditions.

Recent findings

There are multiple imaging modalities available to assess LVV including ultrasonography, CT angiography (CTA), magnetic resonance angiography (MRA), and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET). As these techniques are refined, imaging may be increasingly useful to evaluate the cranial arteries and the aorta and its primary branches. In addition, vascular imaging may be useful to monitor disease activity and may have prognostic value to predict future clinical events.

Summary

There are strengths and weaknesses associated with vascular imaging that should be considered when evaluating patients with LVV. Vascular imaging will likely play an increasingly important role in the clinical management of patients and the conduct of research in LVV and may ultimately be incorporated as outcome measures in clinical trials in these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013;65(1):1–11. https://doi.org/10.1002/art.37715.

    Article  PubMed  CAS  Google Scholar 

  2. Hunder GG, Arend WP, Bloch DA, Calabrese LH, Fauci AS, Fries JF, et al. The American College of Rheumatology 1990 criteria for the classification of vasculitis. Arthritis Rheum. 1990;33(8):1065–7.

    Article  PubMed  CAS  Google Scholar 

  3. Hunder GG, Bloch DA, Michel BA, Stevens MB, Arend WP, Calabrese LH, et al. The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum. 1990;33(8):1122–8.

    Article  PubMed  CAS  Google Scholar 

  4. Arend WP, Michel BA, Bloch DA, Hunder GG, Calabrese LH, Edworthy SM, et al. The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis Rheum. 1990;33(8):1129–34.

    Article  PubMed  CAS  Google Scholar 

  5. Chrysidis S, Duftner C, Dejaco C, Schafer VS, Ramiro S, Carrara G, et al. Definitions and reliability assessment of elementary ultrasound lesions in giant cell arteritis: a study from the OMERACT Large Vessel Vasculitis Ultrasound Working Group. RMD Open. 2018;4(1):e000598. https://doi.org/10.1136/rmdopen-2017-000598.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Aschwanden M, Imfeld S, Staub D, Baldi T, Walker UA, Berger CT et al. The ultrasound compression sign to diagnose temporal giant cell arteritis shows an excellent interobserver agreement. Clin Exp Rheumatol. 2015;33(2 Suppl 89):S-113-5.

  7. Monti S, Floris A, Ponte C, Schmidt WA, Diamantopoulos AP, Pereira C, et al. The use of ultrasound to assess giant cell arteritis: review of the current evidence and practical guide for the rheumatologist. Rheumatology (Oxford). 2018;57(2):227–35. https://doi.org/10.1093/rheumatology/kex173.

    Article  Google Scholar 

  8. Schmidt WA, Kraft HE, Vorpahl K, Volker L, Gromnica-Ihle EJ. Color duplex ultrasonography in the diagnosis of temporal arteritis. N Engl J Med. 1997;337(19):1336–42. https://doi.org/10.1056/NEJM199711063371902.

    Article  PubMed  CAS  Google Scholar 

  9. Arida A, Kyprianou M, Kanakis M, Sfikakis PP. The diagnostic value of ultrasonography-derived edema of the temporal artery wall in giant cell arteritis: a second meta-analysis. BMC Musculoskelet Disord. 2010;11:44. https://doi.org/10.1186/1471-2474-11-44.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Maldini C, Depinay-Dhellemmes C, Tra TT, Chauveau M, Allanore Y, Gossec L, et al. Limited value of temporal artery ultrasonography examinations for diagnosis of giant cell arteritis: analysis of 77 subjects. J Rheumatol. 2010;37(11):2326–30. https://doi.org/10.3899/jrheum.100353.

    Article  PubMed  Google Scholar 

  11. Luqmani R, Lee E, Singh S, Gillett M, Schmidt WA, Bradburn M, et al. The role of ultrasound compared to biopsy of temporal arteries in the diagnosis and treatment of giant cell arteritis (TABUL): a diagnostic accuracy and cost-effectiveness study. Health Technol Assess. 2016;20(90):1–238. https://doi.org/10.3310/hta20900. This study compared ultrasound to temporal artery biopsy in giant cell arteritis in a large cohort of patients.

  12. Salvarani C, Silingardi M, Ghirarduzzi A, Lo Scocco G, Macchioni P, Bajocchi G, et al. Is duplex ultrasonography useful for the diagnosis of giant-cell arteritis? Ann Intern Med. 2002;137(4):232–8.

    Article  PubMed  Google Scholar 

  13. Karassa FB, Matsagas MI, Schmidt WA, Ioannidis JP. Meta-analysis: test performance of ultrasonography for giant-cell arteritis. Ann Intern Med. 2005;142(5):359–69.

    Article  PubMed  Google Scholar 

  14. Ball EL, Walsh SR, Tang TY, Gohil R, Clarke JM. Role of ultrasonography in the diagnosis of temporal arteritis. Br J Surg. 2010;97(12):1765–71. https://doi.org/10.1002/bjs.7252.

    Article  PubMed  CAS  Google Scholar 

  15. Schmidt WA, Gromnica-Ihle E. Incidence of temporal arteritis in patients with polymyalgia rheumatica: a prospective study using colour Doppler ultrasonography of the temporal arteries. Rheumatology (Oxford). 2002;41(1):46–52.

    Article  PubMed  CAS  Google Scholar 

  16. Diamantopoulos AP, Haugeberg G, Lindland A, Myklebust G. The fast-track ultrasound clinic for early diagnosis of giant cell arteritis significantly reduces permanent visual impairment: towards a more effective strategy to improve clinical outcome in giant cell arteritis? Rheumatology (Oxford). 2016;55(1):66–70. https://doi.org/10.1093/rheumatology/kev289.

    Article  Google Scholar 

  17. Patil P, Williams M, Maw WW, Achilleos K, Elsideeg S, Dejaco C et al. Fast track pathway reduces sight loss in giant cell arteritis: results of a longitudinal observational cohort study. Clin Exp Rheumatol. 2015;33(2 Suppl 89):S-103-6.

  18. Rheaume M, Rebello R, Pagnoux C, Carette S, Clements-Baker M, Cohen-Hallaleh V, et al. High-resolution magnetic resonance imaging of scalp arteries for the diagnosis of giant cell arteritis: results of a prospective cohort study. Arthritis Rheumatol. 2017;69(1):161–8. https://doi.org/10.1002/art.39824. This is a large study evaluating use of high-resolution MRI to evaluate cranial arteries in patients with suspected giant cell arteritis.

  19. Bley TA, Uhl M, Carew J, Markl M, Schmidt D, Peter HH, et al. Diagnostic value of high-resolution MR imaging in giant cell arteritis. AJNR Am J Neuroradiol. 2007;28(9):1722–7. https://doi.org/10.3174/ajnr.A0638.

    Article  PubMed  CAS  Google Scholar 

  20. Geiger J, Bley T, Uhl M, Frydrychowicz A, Langer M, Markl M. Diagnostic value of T2-weighted imaging for the detection of superficial cranial artery inflammation in giant cell arteritis. J Magn Reson Imaging. 2010;31(2):470–4. https://doi.org/10.1002/jmri.22047.

    Article  PubMed  Google Scholar 

  21. Klink T, Geiger J, Both M, Ness T, Heinzelmann S, Reinhard M, et al. Giant cell arteritis: diagnostic accuracy of MR imaging of superficial cranial arteries in initial diagnosis-results from a multicenter trial. Radiology. 2014;273(3):844–52. https://doi.org/10.1148/radiol.14140056.

    Article  PubMed  Google Scholar 

  22. Craven A, Robson J, Ponte C, Grayson PC, Suppiah R, Judge A, et al. ACR/EULAR-endorsed study to develop Diagnostic and Classification Criteria for Vasculitis (DCVAS). Clin Exp Nephrol. 2013;17(5):619–21. https://doi.org/10.1007/s10157-013-0854-0.

    Article  PubMed  CAS  Google Scholar 

  23. Dejaco C, Ramiro S, Duftner C, Besson FL, Bley TA, Blockmans D, et al. EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice. Ann Rheum Dis. 2018;77(5):636–43. https://doi.org/10.1136/annrheumdis-2017-212649. This paper discusses guidelines proposed by EULAR for use of early imaging tests in patients with suspected giant cell arteritis or Takayasu’s arteritis.

  24. Conway R, Smyth AE, Kavanagh RG, O'Donohoe RL, Purcell Y, Heffernan EJ, et al. Diagnostic utility of computed tomographic angiography in giant-cell arteritis. Stroke. 2018;49(9):2233–6. https://doi.org/10.1161/STROKEAHA.118.021995.

    Article  PubMed  Google Scholar 

  25. Sammel A HE, Schembri G, Nguyen K, Brewer J, Schrieber L, Janssen B, Youssef P, Fraser C, Bailey E, Bailey D, Roach P, Laurent R. The diagnostic accuracy of PET/CT scan of the head, neck and thorax compared with temporal artery biopsy in patients newly suspected of having GCA [abstract]. Arthritis Rheumatol. 2018; 70 (suppl 10).

  26. Nielsen BD THI, Keller KK, Therkildsen P, Hauge EM, Gormsen LC. FDG PET/CT Visualization of inflammation in temporal and maxillary arteries in treatment-naive GCA patients [abstract]. Arthritis Rheumatol. 2017; 69 (suppl 10).

  27. Grayson PC, Maksimowicz-McKinnon K, Clark TM, Tomasson G, Cuthbertson D, Carette S, et al. Distribution of arterial lesions in Takayasu’s arteritis and giant cell arteritis. Ann Rheum Dis. 2012;71(8):1329–34. https://doi.org/10.1136/annrheumdis-2011-200795.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Soriano A, Pazzola G, Boiardi L, Casali M, Muratore F, Pipitone N, et al. Distribution patterns of 18F-fluorodeoxyglucose in large vessels of Takayasu’s and giant cell arteritis using positron emission tomography. Clin Exp Rheumatol. 2018;36(Suppl 111(2)):99–106.

    PubMed  Google Scholar 

  29. Grayson PC. Lumpers and splitters: ongoing issues in the classification of large vessel vasculitis. J Rheumatol. 2015;42(2):149–51. https://doi.org/10.3899/jrheum.141376.

    Article  PubMed  Google Scholar 

  30. Grayson PC, Tomasson G, Cuthbertson D, Carette S, Hoffman GS, Khalidi NA, et al. Association of vascular physical examination findings and arteriographic lesions in large vessel vasculitis. J Rheumatol. 2012;39(2):303–9. https://doi.org/10.3899/jrheum.110652.

    Article  PubMed  Google Scholar 

  31. Furuta S, Cousins C, Chaudhry A, Jayne D. Clinical features and radiological findings in large vessel vasculitis: are Takayasu arteritis and giant cell arteritis 2 different diseases or a single entity? J Rheumatol. 2015;42(2):300–8. https://doi.org/10.3899/jrheum.140562.

    Article  PubMed  Google Scholar 

  32. Slart R, Writing g, Reviewer g, Members of EC, Members of EI, Inflammation, et al. FDG-PET/CT(A) imaging in large vessel vasculitis and polymyalgia rheumatica: joint procedural recommendation of the EANM, SNMMI, and the PET Interest Group (PIG), and endorsed by the ASNC. Eur J Nucl Med Mol Imaging. 2018;45(7):1250–69. https://doi.org/10.1007/s00259-018-3973-8. This paper outlines recommendations for use of FDG-PET in large-vessel vasculitis.

  33. Lariviere D, Benali K, Coustet B, Pasi N, Hyafil F, Klein I, et al. Positron emission tomography and computed tomography angiography for the diagnosis of giant cell arteritis: a real-life prospective study. Medicine (Baltimore). 2016;95(30):e4146. https://doi.org/10.1097/MD.0000000000004146.

    Article  Google Scholar 

  34. Yamada I, Nakagawa T, Himeno Y, Numano F, Shibuya H. Takayasu arteritis: evaluation of the thoracic aorta with CT angiography. Radiology. 1998;209(1):103–9. https://doi.org/10.1148/radiology.209.1.9769819.

    Article  PubMed  CAS  Google Scholar 

  35. Sparks AR, Johnson PL, Meyer MC. Imaging of abdominal aortic aneurysms. Am Fam Physician. 2002;65(8):1565–70.

    PubMed  Google Scholar 

  36. Yamada I, Nakagawa T, Himeno Y, Kobayashi Y, Numano F, Shibuya H. Takayasu arteritis: diagnosis with breath-hold contrast-enhanced three-dimensional MR angiography. J Magn Reson Imaging. 2000;11(5):481–7.

    Article  PubMed  CAS  Google Scholar 

  37. Meller J, Grabbe E, Becker W, Vosshenrich R. Value of F-18 FDG hybrid camera PET and MRI in early takayasu aortitis. Eur Radiol. 2003;13(2):400–5. https://doi.org/10.1007/s00330-002-1518-8.

    Article  PubMed  CAS  Google Scholar 

  38. Tedeschi E, Caranci F, Giordano F, Angelini V, Cocozza S, Brunetti A. Gadolinium retention in the body: what we know and what we can do. Radiol Med. 2017;122(8):589–600. https://doi.org/10.1007/s11547-017-0757-3.

    Article  PubMed  Google Scholar 

  39. Ramalho M, Ramalho J, Burke LM, Semelka RC. Gadolinium retention and toxicity-an update. Adv Chronic Kidney Dis. 2017;24(3):138–46. https://doi.org/10.1053/j.ackd.2017.03.004.

    Article  PubMed  Google Scholar 

  40. Besson FL, de Boysson H, Parienti JJ, Bouvard G, Bienvenu B, Agostini D. Towards an optimal semiquantitative approach in giant cell arteritis: an (18)F-FDG PET/CT case-control study. Eur J Nucl Med Mol Imaging. 2014;41(1):155–66. https://doi.org/10.1007/s00259-013-2545-1.

    Article  PubMed  Google Scholar 

  41. Prieto-Gonzalez S, Depetris M, Garcia-Martinez A, Espigol-Frigole G, Tavera-Bahillo I, Corbera-Bellata M, et al. Positron emission tomography assessment of large vessel inflammation in patients with newly diagnosed, biopsy-proven giant cell arteritis: a prospective, case-control study. Ann Rheum Dis. 2014;73(7):1388–92. https://doi.org/10.1136/annrheumdis-2013-204572.

    Article  PubMed  Google Scholar 

  42. Lehmann P, Buchtala S, Achajew N, Haerle P, Ehrenstein B, Lighvani H, et al. 18F-FDG PET as a diagnostic procedure in large vessel vasculitis-a controlled, blinded re-examination of routine PET scans. Clin Rheumatol. 2011;30(1):37–42. https://doi.org/10.1007/s10067-010-1598-9.

    Article  PubMed  Google Scholar 

  43. Fuchs M, Briel M, Daikeler T, Walker UA, Rasch H, Berg S, et al. The impact of 18F-FDG PET on the management of patients with suspected large vessel vasculitis. Eur J Nucl Med Mol Imaging. 2012;39(2):344–53. https://doi.org/10.1007/s00259-011-1967-x.

    Article  PubMed  Google Scholar 

  44. Hautzel H, Sander O, Heinzel A, Schneider M, Muller HW. Assessment of large-vessel involvement in giant cell arteritis with 18F-FDG PET: introducing an ROC-analysis-based cutoff ratio. J Nucl Med. 2008;49(7):1107–13. https://doi.org/10.2967/jnumed.108.051920.

    Article  PubMed  Google Scholar 

  45. Walter MA, Melzer RA, Schindler C, Muller-Brand J, Tyndall A, Nitzsche EU. The value of [18F]FDG-PET in the diagnosis of large-vessel vasculitis and the assessment of activity and extent of disease. Eur J Nucl Med Mol Imaging. 2005;32(6):674–81. https://doi.org/10.1007/s00259-004-1757-9.

    Article  PubMed  Google Scholar 

  46. Meller J, Strutz F, Siefker U, Scheel A, Sahlmann CO, Lehmann K, et al. Early diagnosis and follow-up of aortitis with [(18)F]FDG PET and MRI. Eur J Nucl Med Mol Imaging. 2003;30(5):730–6. https://doi.org/10.1007/s00259-003-1144-y.

    Article  PubMed  CAS  Google Scholar 

  47. Henes JC, Muller M, Krieger J, Balletshofer B, Pfannenberg AC, Kanz L, et al. [18F] FDG-PET/CT as a new and sensitive imaging method for the diagnosis of large vessel vasculitis. Clin Exp Rheumatol. 2008;26(3 Suppl 49):S47–52.

    PubMed  CAS  Google Scholar 

  48. Lee YH, Choi SJ, Ji JD, Song GG. Diagnostic accuracy of 18F-FDG PET or PET/CT for large vessel vasculitis : a meta-analysis. Z Rheumatol. 2016;75(9):924–31. https://doi.org/10.1007/s00393-015-1674-2.

    Article  PubMed  CAS  Google Scholar 

  49. Grayson PC, Alehashemi S, Bagheri AA, Civelek AC, Cupps TR, Kaplan MJ, et al. (18) F-Fluorodeoxyglucose-positron emission tomography as an imaging biomarker in a prospective, longitudinal cohort of patients with large vessel vasculitis. Arthritis Rheumatol. 2018;70(3):439–49. https://doi.org/10.1002/art.40379.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Prieto-Pena D, Martinez-Rodriguez I, Loricera J, Banzo I, Calderon-Goercke M, Calvo-Rio V, et al. Predictors of positive (18)F-FDG PET/CT-scan for large vessel vasculitis in patients with persistent polymyalgia rheumatica. Semin Arthritis Rheum. 2018. https://doi.org/10.1016/j.semarthrit.2018.05.007.

  51. Schinkel AF, van den Oord SC, van der Steen AF, van Laar JA, Sijbrands EJ. Utility of contrast-enhanced ultrasound for the assessment of the carotid artery wall in patients with Takayasu or giant cell arteritis. Eur Heart J Cardiovasc Imaging. 2014;15(5):541–6. https://doi.org/10.1093/ehjci/jet243.

    Article  PubMed  Google Scholar 

  52. Dikkes A, Aschwanden M, Imfeld S, Glatz K, Messerli J, Staub D, et al. Takayasu arteritis: active or not, that's the question. Rheumatology (Oxford). 2017;56(10):1818–9. https://doi.org/10.1093/rheumatology/kex213.

    Article  Google Scholar 

  53. Germano G, Macchioni P, Possemato N, Boiardi L, Nicolini A, Casali M, et al. Contrast-enhanced ultrasound of the carotid artery in patients with large vessel vasculitis: correlation with positron emission tomography findings. Arthritis Care Res. 2017;69(1):143–9. https://doi.org/10.1002/acr.22906.

    Article  Google Scholar 

  54. Herlin B, Baud JM, Chadenat ML, Pico F. Contrast-enhanced ultrasonography in Takayasu arteritis: watching and monitoring the arterial inflammation. BMJ Case Rep 2015;2015. doi:https://doi.org/10.1136/bcr-2015-211094.

  55. Schmidt WA. Ultrasound in the diagnosis and management of giant cell arteritis. Rheumatology (Oxford). 2018;57(suppl_2):ii22–31. https://doi.org/10.1093/rheumatology/kex461.

    Article  Google Scholar 

  56. Prieto-Gonzalez S, Garcia-Martinez A, Tavera-Bahillo I, Hernandez-Rodriguez J, Gutierrez-Chacoff J, Alba MA, et al. Effect of glucocorticoid treatment on computed tomography angiography detected large-vessel inflammation in giant-cell arteritis. A prospective, longitudinal study. Medicine (Baltimore). 2015;94(5):e486. https://doi.org/10.1097/MD.0000000000000486.

    Article  PubMed Central  CAS  Google Scholar 

  57. Quinn KA, Ahlman MA, Malayeri AA, Marko J, Civelek AC, Rosenblum JS, et al. Comparison of magnetic resonance angiography and (18)F-fluorodeoxyglucose positron emission tomography in large-vessel vasculitis. Ann Rheum Dis. 2018;77(8):1165–71. https://doi.org/10.1136/annrheumdis-2018-213102. This study compares use of MRA and FDG-PET in the assessment of large-vessel vasculitis. Many patients in this study had evidence of disease activity on both MRA and PET imaging during periods of clinical remission.

  58. Barra L, Kanji T, Malette J, Pagnoux C, CanVasc. Imaging modalities for the diagnosis and disease activity assessment of Takayasu’s arteritis: a systematic review and meta-analysis. Autoimmun Rev. 2018;17(2):175–87. https://doi.org/10.1016/j.autrev.2017.11.021.

    Article  PubMed  Google Scholar 

  59. Blockmans D, Bley T, Schmidt W. Imaging for large-vessel vasculitis. Curr Opin Rheumatol. 2009;21(1):19–28. https://doi.org/10.1097/BOR.0b013e32831cec7b.

    Article  PubMed  Google Scholar 

  60. Blockmans D, de Ceuninck L, Vanderschueren S, Knockaert D, Mortelmans L, Bobbaers H. Repetitive 18F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a prospective study of 35 patients. Arthritis Rheum. 2006;55(1):131–7. https://doi.org/10.1002/art.21699.

    Article  PubMed  Google Scholar 

  61. Both M, Ahmadi-Simab K, Reuter M, Dourvos O, Fritzer E, Ullrich S, et al. MRI and FDG-PET in the assessment of inflammatory aortic arch syndrome in complicated courses of giant cell arteritis. Ann Rheum Dis. 2008;67(7):1030–3. https://doi.org/10.1136/ard.2007.082123.

    Article  PubMed  CAS  Google Scholar 

  62. Lee KH, Cho A, Choi YJ, Lee SW, Ha YJ, Jung SJ, et al. The role of (18) F-fluorodeoxyglucose-positron emission tomography in the assessment of disease activity in patients with takayasu arteritis. Arthritis Rheum. 2012;64(3):866–75. https://doi.org/10.1002/art.33413.

    Article  PubMed  Google Scholar 

  63. Soussan M, Nicolas P, Schramm C, Katsahian S, Pop G, Fain O, et al. Management of large-vessel vasculitis with FDG-PET: a systematic literature review and meta-analysis. Medicine (Baltimore). 2015;94(14):e622. https://doi.org/10.1097/MD.0000000000000622.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Scheel AK, Meller J, Vosshenrich R, Kohlhoff E, Siefker U, Muller GA, et al. Diagnosis and follow up of aortitis in the elderly. Ann Rheum Dis. 2004;63(11):1507–10. https://doi.org/10.1136/ard.2003.015651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Newman KA, Ahlman MA, Hughes M, Malayeri AA, Pratt D, Grayson PC. Diagnosis of giant cell arteritis in an asymptomatic patient. Arthritis Rheumatol. 2016;68(5):1135. https://doi.org/10.1002/art.39517.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Misra R, Danda D, Rajappa SM, Ghosh A, Gupta R, Mahendranath KM, et al. Development and initial validation of the Indian Takayasu Clinical Activity Score (ITAS2010). Rheumatology (Oxford). 2013;52(10):1795–801. https://doi.org/10.1093/rheumatology/ket128.

    Article  PubMed  Google Scholar 

  67. Reichenbach S, Adler S, Bonel H, Cullmann JL, Kuchen S, Butikofer L, et al. Magnetic resonance angiography in giant cell arteritis: results of a randomized controlled trial of tocilizumab in giant cell arteritis. Rheumatology (Oxford). 2018;57(6):982–6. https://doi.org/10.1093/rheumatology/key015.

    Article  CAS  Google Scholar 

  68. Arnaud L, Haroche J, Malek Z, Archambaud F, Gambotti L, Grimon G, et al. Is (18)F-fluorodeoxyglucose positron emission tomography scanning a reliable way to assess disease activity in Takayasu arteritis? Arthritis Rheum. 2009;60(4):1193–200. https://doi.org/10.1002/art.24416.

    Article  PubMed  Google Scholar 

  69. Kerr GS, Hallahan CW, Giordano J, Leavitt RY, Fauci AS, Rottem M, et al. Takayasu arteritis. Ann Intern Med. 1994;120(11):919–29.

    Article  PubMed  CAS  Google Scholar 

  70. Ostberg G. Morphological changes in the large arteries in polymyalgia arteritica. Acta Med Scand Suppl. 1972;533:135–59.

    PubMed  CAS  Google Scholar 

  71. Banerjee S QK, Gribbons KB, Rosenblum JS, Civelek A, Novakovich E, Bagheri A, Merkel PA, Ahlman MA, Grayson PC. Effect of specific treatments on clinical, serologic, and imaging assessments of disease activity in large-vessel vasculitis [abstract]. Arthritis Rheumatol. 2018; 70 (suppl 10).

  72. Dellavedova L, Carletto M, Faggioli P, Sciascera A, Del Sole A, Mazzone A, et al. The prognostic value of baseline (18)F-FDG PET/CT in steroid-naive large-vessel vasculitis: introduction of volume-based parameters. Eur J Nucl Med Mol Imaging. 2016;43(2):340–8. https://doi.org/10.1007/s00259-015-3148-9.

    Article  PubMed  CAS  Google Scholar 

  73. Nuenninghoff DM, Hunder GG, Christianson TJ, McClelland RL, Matteson EL. Incidence and predictors of large-artery complication (aortic aneurysm, aortic dissection, and/or large-artery stenosis) in patients with giant cell arteritis: a population-based study over 50 years. Arthritis Rheum. 2003;48(12):3522–31. https://doi.org/10.1002/art.11353.

    Article  PubMed  Google Scholar 

  74. de Boysson H, Daumas A, Vautier M, Parienti JJ, Liozon E, Lambert M, et al. Large-vessel involvement and aortic dilation in giant-cell arteritis. A multicenter study of 549 patients. Autoimmun Rev. 2018;17(4):391–8. https://doi.org/10.1016/j.autrev.2017.11.029.

    Article  PubMed  Google Scholar 

  75. Nielsen BD, Gormsen LC, Hansen IT, Keller KK, Therkildsen P, Hauge EM. Three days of high-dose glucocorticoid treatment attenuates large-vessel 18F-FDG uptake in large-vessel giant cell arteritis but with a limited impact on diagnostic accuracy. Eur J Nucl Med Mol Imaging. 2018;45(7):1119–28. https://doi.org/10.1007/s00259-018-4021-4.

    Article  PubMed  CAS  Google Scholar 

  76. Lee VS, Martin DJ, Krinsky GA, Rofsky NM. Gadolinium-enhanced MR angiography: artifacts and pitfalls. AJR Am J Roentgenol. 2000;175(1):197–205. https://doi.org/10.2214/ajr.175.1.1750197.

    Article  PubMed  CAS  Google Scholar 

  77. Youngstein T, Tombetti E, Mukherjee J, Barwick TD, Al-Nahhas A, Humphreys E, et al. FDG uptake by prosthetic arterial grafts in large vessel vasculitis is not specific for active disease. JACC Cardiovasc Imaging. 2017;10(9):1042–52. https://doi.org/10.1016/j.jcmg.2016.09.027.

    Article  PubMed  Google Scholar 

  78. Berger CT, Sommer G, Aschwanden M, Staub D, Rottenburger C, Daikeler T. The clinical benefit of imaging in the diagnosis and treatment of giant cell arteritis. Swiss Med Wkly. 2018;148:w14661. https://doi.org/10.4414/smw.2018.14661.

    Article  PubMed  Google Scholar 

  79. Aydin SZ, Yilmaz N, Akar S, Aksu K, Kamali S, Yucel E, et al. Assessment of disease activity and progression in Takayasu’s arteritis with Disease Extent Index-Takayasu. Rheumatology (Oxford). 2010;49(10):1889–93. https://doi.org/10.1093/rheumatology/keq171.

    Article  PubMed  Google Scholar 

  80. Nakagomi D, Cousins C, Sznajd J, Furuta S, Mohammad AJ, Luqmani R, et al. Development of a score for assessment of radiologic damage in large-vessel vasculitis (Combined Arteritis Damage Score, CARDS). Clin Exp Rheumatol. 2017;35(Suppl 103(1)):139–45.

    PubMed  Google Scholar 

  81. Tombetti E, Godi C, Ambrosi A, Doyle F, Jacobs A, Kiprianos AP, et al. Novel angiographic scores for evaluation of large vessel vasculitis. Sci Rep. 2018;8(1):15979. https://doi.org/10.1038/s41598-018-34395-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Jiemy WF, Heeringa P, Kamps J, van der Laken CJ, Slart R, Brouwer E. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging of macrophages in large vessel vasculitis: current status and future prospects. Autoimmun Rev. 2018;17(7):715–26. https://doi.org/10.1016/j.autrev.2018.02.006.

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported through the Intramural Research Program at the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. Grayson MD, MSc.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Vasculitis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quinn, K.A., Grayson, P.C. The Role of Vascular Imaging to Advance Clinical Care and Research in Large-Vessel Vasculitis. Curr Treat Options in Rheum 5, 20–35 (2019). https://doi.org/10.1007/s40674-019-00114-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40674-019-00114-0

Keywords

Navigation