Skip to main content

Advertisement

Log in

Enhancing Learning Experience Using Ultrasound Simulation in Undergraduate Medical Education: Student Perception

  • Original Research
  • Published:
Medical Science Educator Aims and scope Submit manuscript

Abstract

Advances in programmable ultrasound training models may enhance the education of medical students through simulation of a variety of clinical presentations and pathologies. The purpose of the current study was to assess medical student perception of the impact of incorporating ultrasound training models in a required, second-year clinical ultrasound course. Students completed seven ultrasound assignments, demonstrating competency using eight pathology-simulating ultrasound training models. A 5-item survey was administered at the end of second year and included 4 items specific for each model and 1 item that was not model specific. The majority of students agreed or strongly agreed training models were easy to scan and learn, correlated well with what they learned, and aided clinical decision-making skills. Most students agreed or strongly agreed that they felt capable of performing ultrasound skills in a clinical setting under supervision, and almost all agreed or strongly agreed they were prepared to use ultrasound in a clinical setting. Student perception depended on training model (all P < .001). Differences were found between models for the easy to scan and learn item (all P < .02) and the capable of performing in a clinical setting under supervision item (all P < .02). Results suggested students felt prepared to use ultrasonography in a clinical setting after using ultrasound training models. Inclusion of medical ultrasound simulation in the medical school curriculum should be considered to provide students with realistic training before actual patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fox JC, Schlang JR, Maldonado G, Lotfipour S, Clayman RV. Proactive medicine: the “UCI 30,” an ultrasound-based clinical initiative from the University of California, Irvine. Acad Med. 2014;89:984–9.

    Article  Google Scholar 

  2. Hoppmann RA, Rao VV, Poston MB, et al. An integrated ultrasound curriculum (iUSC) for medical students: 4-year experience. Crit Ultrasound J. 2011;3:1–12. doi:10.1007/s13089-011-0052-9.

    Article  Google Scholar 

  3. Rao S, van Holsbeeck L, Musial JL, Parker A, Bouffard JA, Bridge P, Jackson M, Dulchavsky SA. A pilot study of comprehensive ultrasound education at the Wayne State University School of Medicine: a pioneer year review. J Ultrasound Med. 2008;27:745–9.

    Article  Google Scholar 

  4. Hoppmann R, Blaivas M, Elbarbary M. Better medical education and health care through point-of-care ultrasound. Acad Med. 2012;87:134. doi:10.1097/ACM.0b013e31823f0e8f.

    Article  Google Scholar 

  5. Solomon SD, Saldana F. Point-of-care ultrasound in medical education: stop listening and look. N Engl J Med. 2014;370:1083–5. doi:10.1056/NEJMp1311944.

    Article  Google Scholar 

  6. Minardi J, Davidov D, Denne N, Haggerty T, Kiefer C, Tillotson R, Whiteman C, Williams D, Williams D. Bedside ultrasound: advanced technology to improve rural healthcare. W V Med J. 2013;109:28–34.

    Google Scholar 

  7. Moore CL, Copel JA. Point-of-care ultrasonography. N Engl J Med. 2011;364:749–57. doi:10.1056/NEJMra0909487.

    Article  Google Scholar 

  8. Brenner DJ, Hall EJ. Computed tomography: an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.

    Article  Google Scholar 

  9. Dinh VA, Frederick J, Bartos R, Shankel TM, Werner L. Effects of ultrasound implementation on physical examination learning and teaching during the first year of medical education. J Ultrasound Med. 2015;34:43–50. doi:10.7863/ultra.34.1.43.

    Article  Google Scholar 

  10. Okuda Y, Bryson EO, DeMaria S Jr, Jacobson L, Quinones J, Shen B, Levine AI. The utility of simulation in medical education: what is the evidence? Mt Sinai J Med. 2009;76:330–43. doi:10.1002/msj.20127.

    Article  Google Scholar 

  11. Lewiss RE, Hoffmann B, Beaulieu Y, Phelan MB. Point-of-care ultrasound education: the increasing role of simulation and multimedia resources. J Ultrasound Med. 2014;33:27–32.

    Article  Google Scholar 

  12. Daftari AP, Jaffer J, Homer SH, Schaefer MP. Bovine shoulder and hip models to teach ultrasound-guided injections. Am J Phys Med Rehabil. 2011;90:746–55.

    Article  Google Scholar 

  13. Baltarowich OH, Di Salvo DN, Scoutt LM, et al. National ultrasound curriculum for medical students. Ultrasound Q. 2014;30:13–9.

    Article  Google Scholar 

  14. Kneebone R. Simulation in surgical training: educational issues and practical implications. Med Educ. 2003;37:267–77.

    Article  Google Scholar 

  15. Yoo MC, Villegas L, Jones DB. Basic ultrasound curriculum for medical students: validation of content and phantom. J Laparoendosc Adv Surg Tech A. 2004;14:374–9. doi:10.1089/lap.2004.14.374.

    Article  Google Scholar 

  16. Maul H, Scharf A, Baier P, Wüstemann M, Günter H, Gebauer G, Sohn C. Ultrasound simulators: experience with the SonoTrainer and comparative review of other training systems. Ultrasound Obstet Gynecol. 2004;24:581–5.

    Article  Google Scholar 

  17. Miller GT, Scerbo MW, Zybak S, et al. Learner improvement from a simulation-enhanced ultrasonography curriculum for first-year medical students. J Ultrasound Med. 2017;36:609–19. doi:10.7863/ultra.15.12025.

    Article  Google Scholar 

  18. McGaghie WC, Issenberg SB, Cohen MER, Barsuk JH, Wayne DB. Does simulation-based medical education with deliberate practice yield better results than traditional clinical education? A meta-analytic comparative review of the evidence. Acad Med. 2011;86:706–11.

    Article  Google Scholar 

  19. McGaghie WC, Issenberg SB, Petrusa ER, Scalese RJ. A critical review of simulation-based medical education research: 2003–2009. Med Educ. 2010;44:50–63.

    Article  Google Scholar 

  20. Berkenstadt H, Erez D, Munz Y, Simon D, Ziv A. Training and assessment of trauma management: the role of simulation-based medical education. Anesthesiol Clin. 2007;25:65–74.

    Article  Google Scholar 

  21. Wayne DB, Barsuk JH, O'Leary KJ, Fudala MJ, McGaghie WC. Mastery learning of thoracentesis skills by internal medicine residents using simulation technology and deliberate practice. J Hosp Med. 2008;3:48–54.

    Article  Google Scholar 

  22. Silva JP, Plescia T, Molina N, Tonelli AC, Langdorf M, Fox JC. Randomized study of effectiveness of computerized ultrasound simulators for an introductory course for residents in Brazil. J Educ Eval Health Prof. 2016;13:16.

    Article  Google Scholar 

  23. Mendiratta-Lala M, Williams T, de Quadros N, Bonnett J, Mendiratta V. The use of a simulation center to improve resident proficiency in performing ultrasound-guided procedures. Acad Radiol. 2010;17:535–40.

    Article  Google Scholar 

  24. Parks AR, Atkinson P, Verheul G, LeBlanc-Duchin D. Can medical learners achieve point-of-care ultrasound competency using a high-fidelity ultrasound simulator? A pilot study. Crit Ultrasound J. 2013;5:9. doi:10.1186/2036-7902-5-9.

    Article  Google Scholar 

  25. Akaike M, Fukutomi M, Nagamune M, Fujimoto A, Tsuji A, Ishida K, Iwata T. Simulation-based medical education in clinical skills laboratory. J Med Investig. 2012;59:28–35. doi:10.2152/jmi.59.28.

    Article  Google Scholar 

  26. Sullivan G, Simpson D, Cooney T, Beresin E. A milestone in the milestones movement: the JGME milestones supplement. J Grad Med Educ. 2013;5:1–4.

    Article  Google Scholar 

  27. Dinh VA, Lakoff D, Hess J, Bahner DP, Hoppmann R, Blaivas M, Pellerito JS, Abuhamad A, Khandelwal S. Medical student core clinical ultrasound milestones: a consensus among directors in the United States. J Ultrasound Med. 2016;35:421–34.

    Article  Google Scholar 

  28. Lee K, Kim SY, Choi SM, Kim JS, Lee B, Seo K, Lee Y, Kim D. Effectiveness of prenatal ultrasonography in detecting fetal anomalies and perinatal outcome of anomalous fetuses. Yonsei Med J. 1998;39:372–82.

    Article  Google Scholar 

  29. Madjar H. Role of breast ultrasound for the detection and differentiation of breast lesions. Breast Care (Basel). 2010;5:109–14.

    Article  Google Scholar 

  30. Jackson VP. The current role of ultrasonography in breast imaging. Radiol Clin N Am. 1995;33:1161–70.

    Google Scholar 

  31. Huang GC, Smith CC, Gordon CE, Feller-Kopman DJ, Davis RB, Phillips RS, Weingart SN (2006) Beyond the comfort zone: residents assess their comfort performing inpatient medical procedures. Am J Med 119:71.e17-24.

  32. ACS Committee on Perioperative Care (2011) Revised statement on recommendations for use of real-time ultrasound guidance for placement of central venous catheters. Bull Am Coll Surg 96:36–37.

  33. Sznajder JI, Zveibil FR, Bitterman H, Weiner P, Bursztein S. Central vein catheterization: failure and complication rates by three percutaneous approaches. Arch Intern Med. 1986;146:259–61.

    Article  Google Scholar 

  34. McGee DC, Gould MK. Preventing complications of central venous catheterization. N Engl J Med. 2003;348:1123–33.

    Article  Google Scholar 

  35. Turker G, Kaya FN, Gurbet A, Aksu H, Erdogan C, Atlas A. Internal jugular vein cannulation: an ultrasound-guided technique versus a landmark-guided technique. Clinics (Sao Paulo). 2009;64:989–92.

    Article  Google Scholar 

  36. Mallory DL, McGee WT, Shawker TH, Brenner M, Bailey KR, Evans RG, Parker MM, Farmer JC, Parillo JE. Ultrasound guidance improves the success rate of internal jugular vein cannulation: a prospective, randomized trial. Chest. 1990;98:157–60.

    Article  Google Scholar 

  37. Magee D, Zhu Y, Ratnalingam R, Gardner P, Kessel D. An augmented reality simulator for ultrasound guided needle placement training. Med Biol Eng Comput. 2007;45:957–67.

    Article  Google Scholar 

  38. Feller-Kopman D. Ultrasound-guided internal jugular access: a proposed standardized approach and implications for training and practice. Chest. 2007;132:302–9.

    Article  Google Scholar 

  39. Committee on Emerging Surgical Technology and Education (2011) Ultrasound examinations by surgeons. http://wwwfacsorg/fellows_info/statements/st-31html Accessed 10 June 2016.

  40. Beeson M, Christopher T, Heidt J, et al. The emergency medicine milestone project. http://wwwacgmeorg/Portals/0/PDFs/Milestones/EmergencyMedicineMilestonespdf?ver=2015-11-06-120531-877 Accessed. 2015;(10 June 2016)

  41. Newble D, Entwistle N. Learning styles and approaches: implications for medical education. Med Educ. 1986;20:162–75.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana Kondrashova.

Ethics declarations

The authors have no financial disclosures or conflicts of interest to report. The local institutional review board granted exempt status for the study. All authors provided substantial contributions to the conception and design, acquisition of data, or analysis and interpretation of data; all authors drafted the article or revised it critically for important intellectual content; all authors gave final approval of the version of the article to be published, and all authors agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrashova, T., Coleman, C. Enhancing Learning Experience Using Ultrasound Simulation in Undergraduate Medical Education: Student Perception. Med.Sci.Educ. 27, 489–496 (2017). https://doi.org/10.1007/s40670-017-0416-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40670-017-0416-2

Keywords

Navigation