Skip to main content
Log in

Human germline editing: a historical perspective

  • Original Paper
  • Published:
History and Philosophy of the Life Sciences Aims and scope Submit manuscript

Abstract

The development of the genome editing system called CRISPR–Cas9 has opened a huge debate on the possibility of modifying the human germline. But the types of changes that could and/or ought to be made have not been discussed. To cast some light on this debate, I will describe the story of the CRISPR–Cas9 system. Then, I will briefly review the projects for modification of the human species that were discussed by biologists throughout the twentieth century. Lastly, I will show that for plenty of reasons, both scientific and societal, germline modification is no longer a priority for our societies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315, 1709–1712.

    Article  Google Scholar 

  • Bosley, K. S., Botchan, M., Bredenoord, A. L., Carroll, D., Charo, R. A., et al. (2015). CRISPR germline engineering—The community speaks. Nature Biotechology, 33, 478–486.

    Article  Google Scholar 

  • Carroll, D. (2008). Progress and prospects: Zinc finger nucleases as gene therapy agents. Gene Therapy, 15, 1463–1478.

    Article  Google Scholar 

  • Christian, M., Cermak, T., Doyle, E. M., Schmidt, C., Zhang, E., et al. (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 186, 757–761.

    Article  Google Scholar 

  • Davis, B. (1970). Prospects for genetic intervention in man. Science, 170, 1279–1283.

    Article  Google Scholar 

  • Delisle, R. (2009). Les philosophies du néodarwinisme: Conceptions divergentes sur l’homme et le sens de l’évolution. Paris: Presses Universitaires de France.

    Book  Google Scholar 

  • Hotchkiss, R. D. (1965). Portents for a genetic engineering. Journal of Heredity, 56, 197–202.

    Article  Google Scholar 

  • Huxley, A. (1932). Brave new world. London: Chatto & Windus.

    Google Scholar 

  • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821.

    Article  Google Scholar 

  • Knight, J. (2001). Biology’s last taboo. Nature, 413, 12–15.

    Article  Google Scholar 

  • Liang, P., Xu, Y., Zhang, X., Ding, C., Huang, R., et al. (2015). CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein and Cell, 6, 363–372.

    Article  Google Scholar 

  • Long, C., Amoasil, L., Mireault, A. A., McAnally, J. R., Li, H., et al. (2016). Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science, 351, 400–403.

    Article  Google Scholar 

  • Long, C., McAnally, J. R., Shelton, J. M., Mireault, A. A., Bassel-Duby, R., & Olson, E. N. (2014). Prevention of muscular dystrophy in mice by CRISPR/Cas9—Mediated editing of germline DNA. Science, 345, 1184–1188.

    Article  Google Scholar 

  • Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I., & Koonin, E. V. (2006). A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct, 1, 7.

    Article  Google Scholar 

  • Monod, J. (1971). Chance and necessity: An essay on the natural philosophy of modern biology. New York: Knopf.

    Google Scholar 

  • Morange, M. (2015a). CRISPR–Cas: The discovery of an immune system in prokaryotes. Journal of Biosciences, 40, 221–223.

    Article  Google Scholar 

  • Morange, M. (2015b). CRISPR–Cas: From a prokaryotic immune system to a universal genome editing tool. Journal of Biosciences, 40, 829–832.

    Article  Google Scholar 

  • Morange, M. (2016). The success story of the expression ‘genome editing’. Journal of Biosciences, 41, 9–11.

    Article  Google Scholar 

  • Pennisi, E. (2013). The CRISPR craze. Science, 341, 833–836.

    Article  Google Scholar 

  • Perez, E. E., Wang, J., Miller, J. C., Jouvenot, Y., Kim, K. A., et al. (2008). Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nature Biotechnoogy, 26, 808–816.

    Article  Google Scholar 

  • Pourcel, C., Salvignol, G., & Vergnaud, G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 151, 653–663.

    Article  Google Scholar 

  • Puchta, H., Dujon, B., & Hohn, B. (1993). Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Research, 21, 5034–5040.

    Article  Google Scholar 

  • Rouet, P., Smih, F., & Jasin, M. (1994). Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proceedings of the National Academy of Sciences USA, 91, 6064–6068.

    Article  Google Scholar 

  • Stock, G. (2002). Redesigning humans. London: Profile Books.

    Google Scholar 

  • Tang, Y.-P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., et al. (1999). Genetic enhancement of learning and memory in mice. Nature, 401, 63–69.

    Article  Google Scholar 

  • Tasan, I., Jain, S., & Zhao, H. (2016). Use of genome-editing tools to treat sickle cell disease. Human Genetics, 135, 1011–1028.

    Article  Google Scholar 

  • Thomas, K. R., & Capecchi, M. R. (1987). Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 51, 503–512.

    Article  Google Scholar 

  • Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., & Gregory, P. D. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews/Genetics, 11, 636–646.

    Article  Google Scholar 

  • Wadman, M. (1998). Germline gene therapy ‘must be spared excessive regulation’. Nature, 392, 317.

    Article  Google Scholar 

Download references

Acknowledgements

I am indebted to David Marsh for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Morange.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morange, M. Human germline editing: a historical perspective. HPLS 39, 34 (2017). https://doi.org/10.1007/s40656-017-0161-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40656-017-0161-2

Keywords

Navigation