Skip to main content

Advertisement

Log in

The Role of Remaining Carbon Budgets and Net-Zero CO2 Targets in Climate Mitigation Policy

  • Enhancing the Usability of Climate Science and Knowledge for Action (E Gilmore and K Schmitt, Section Editors)
  • Published:
Current Climate Change Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Here, we review recent estimates of the remaining carbon budget, with a focus on characterizing key uncertainties and assessing the implications for net-zero CO2 targets and climate policy.

Recent Findings

Recent analyses offer a range estimates of remaining allowable CO2 emissions for the 1.5 °C and well-below 2 °C climate targets, though the treatment and coverage of key sources of uncertainty vary considerably among studies. We recommend that net-zero CO2 targets be set with explicit recognition of the uncertainty associated with carbon budget estimates and be updated regularly as this uncertainty is better constrained. Allocating the remaining carbon budget among countries or other entities, as well as monitoring progress at the subnational level, represents additional key challenges in applying a carbon budget framework to climate policy.

Summary

Despite these challenges, recent advances in quantifying carbon budget uncertainty demonstrate that the concept is well-suited to inform climate policy and to evaluate whether net-zero CO2 targets are consistent with the goals of the Paris Agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Asayama S, Hulme M, Markusson N. Balancing a budget or running a deficit? The offset regime of carbon removal and solar geoengineering under a carbon budget. Clim Change. 2021;167:25. https://doi.org/10.1007/s10584-021-03174-1.

  2. Matthews HD, Tokarska KB, Nicholls ZRJ, Rogelj J, Canadell JG, Friedlingstein P, et al. Opportunities and challenges in using remaining carbon budgets to guide climate policy. Nat Geosci. 2020;13:769–79. https://doi.org/10.1038/s41561-020-00663-3.

    Article  CAS  Google Scholar 

  3. Rogelj, Shindell D, Jiang K, Fifita S, Forster P, Ginzburg V, et al. Mitigation pathways compatible with 1.5°C in the context of sustainable development. Spec Report, Intergov Panel Clim Chang. 2018. pp. 93–74. https://doi.org/10.1017/9781009157940.004.

  4. Jones CD, Ciais P, Davis SJ, Friedlingstein P, Gasser T, Peters GP, et al. Simulating the Earth system response to negative emissions. Environ Res Lett. 2016;11:095012. https://doi.org/10.1088/1748-9326/11/9/095012.

  5. Rogelj J, Forster PM, Kriegler E, Smith CJ, Séférian R. Estimating and tracking the remaining carbon budget for stringent climate targets. Nature. 2019;571:335–42. https://doi.org/10.1038/s41586-019-1368-z.

    Article  CAS  Google Scholar 

  6. Rogelj J, Geden O, Cowie A, Reisinger A. Net-zero emissions targets are vague: three ways to fix. Nature. 2021;591:365–8. https://doi.org/10.1038/d41586-021-00662-3.

  7. Tokarska KB, Zickfeld K. The effectiveness of net negative carbon dioxide emissions in reversing anthropogenic climate change. Environ Res Lett. 2015;10094013. https://doi.org/10.1088/1748-9326/10/9/094013.

  8. Matthews HD, Gillett NP, Stott PA, Zickfeld K. The proportionality of global warming to cumulative carbon emissions. Nature. 2009;459:829–32. https://doi.org/10.1038/nature08047.

    Article  CAS  Google Scholar 

  9. Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature. 2009;458:1158–62. https://doi.org/10.1038/nature08017.

    Article  CAS  Google Scholar 

  10. Tokarska KB, Gillett NP, Weaver AJ, Arora VK, Eby M. The climate response to five trillion tonnes of carbon. Nat Clim Chang. 2016;6:851–5. https://doi.org/10.1038/nclimate3036.

    Article  CAS  Google Scholar 

  11. Zickfeld K, Eby M, Matthews HD, Weaver AJ. Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc Natl Acad Sci U S A. 2009;106:16129–34. https://doi.org/10.1073/pnas.0805800106.

    Article  Google Scholar 

  12. Canadell JG, Monteiro PMS, Costa MH, Cotrim da Cunha L, Cox PM, Eliseev A V, et al. Global carbon and other biogeochemical cycles and feedbacks. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, et al, editors Clim Chang 2021 Phys Sci Basis Contrib Work Gr I to Sixth Assess Rep Intergov Panel Clim Chang, Cambridge University Press; 2021.  pp. 673–816. https://doi.org/10.1017/9781009157896.007.

  13. Gillett NP, Arora VK, Matthews HD, Allen MR. Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. J Clim. 2013;26:6844–58. https://doi.org/10.1175/JCLI-D-12-00476.1.

    Article  Google Scholar 

  14. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, et al. Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, et al, editors Clim Chang 2013 Phys Sci Basis Contrib Work Gr I to Fifth Assess Rep Intergov Panel Clim Chang, Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2013;1029–36. https://doi.org/10.1017/CBO9781107415324.024.

  15. Caldeira K, Kasting JF. Insensitivity of global warming potentials to carbon dioxide emission scenarios. Nature. 1993;366:251–3. https://doi.org/10.1038/366251a0.

    Article  CAS  Google Scholar 

  16. Matthews HD, Caldeira K. Stabilizing climate requires near-zero emissions. Geophys Res Lett 2008;35:L04705. https://doi.org/10.1029/2007GL032388.

  17. Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature. 2009;458:1163–6. https://doi.org/10.1038/nature08019.

    Article  CAS  Google Scholar 

  18. Zickfeld K, Arora VK, Gillett NP. Is the climate response to CO2 emissions path dependent? Geophys Res Lett 2012;39:L05703. https://doi.org/10.1029/2011GL050205.

  19. Matthews HD, Landry JS, Partanen AI, Allen M, Eby M, Forster PM, et al. Estimating carbon budgets for ambitious climate targets. Curr Clim Chang Reports. 2017;3:69–77. https://doi.org/10.1007/s40641-017-0055-0.

    Article  Google Scholar 

  20. Rogelj J, Schaeffer M, Friedlingstein P, Gillett NP, van Vuuren DP, Riahi K, et al. Differences between carbon budget estimates unravelled. Nat Clim Chang 2016;6245–52. https://doi.org/10.1038/nclimate2868.

  21. Millar RJ, Fuglestvedt JS, Friedlingstein P, Rogelj J, Grubb MJ, Matthews HD, et al. Emission budgets and pathways consistent with limiting warming to 1.5 °c. Nat Geosci. 2017;10:741–7. https://doi.org/10.1038/NGEO3031.

    Article  CAS  Google Scholar 

  22. Tokarska KB, Gillett NP, Arora VK, Lee WG, Zickfeld K. The influence of non-CO2 forcings on cumulative carbon emissions budgets. Environ Res Lett. 2018;13:034039. https://doi.org/10.1088/1748-9326/aaafdd.

    Article  Google Scholar 

  23. Tokarska KB, Schleussner CF, Rogelj J, Stolpe MB, Matthews HD, Pfleiderer P, et al. Recommended temperature metrics for carbon budget estimates, model evaluation and climate policy. Nat Geosci. 2019;12:964–71. https://doi.org/10.1038/s41561-019-0493-5.

    Article  CAS  Google Scholar 

  24. Forster PM, Storelvmo T, Armour K, Collins W, Dufresne JL, Frame D, et al. The Earth’s energy budget, climate feedbacks, and climate sensitivity. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, et al, editors Clim Chang 2021 Phys Sci Basis Contrib Work Gr I to Sixth Assess Rep Intergov Panel Clim Chang, Cambridge University Press. 2021. pp. 923–1054.

  25. Gasser T, Kechiar M, Ciais P, Burke EJ, Kleinen T, Zhu D, et al. Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release. Nat Geosci. 2018;11:830–5. https://doi.org/10.1038/s41561-018-0227-0.

    Article  CAS  Google Scholar 

  26. MacDougall AH, Zickfeld K, Knutti R, Matthews HD. Sensitivity of carbon budgets to permafrost carbon feedbacks and non-CO2 forcings. Environ Res Lett. 2015;10:125003. https://doi.org/10.1088/1748-9326/10/12/125003.

    Article  CAS  Google Scholar 

  27. Matthews HD, Tokarska KB, Rogelj J, Smith CJ, MacDougall AH, Haustein K, et al. An integrated approach to quantifying uncertainties in the remaining carbon budget. Commun Earth Environ. 2021;2:7. https://doi.org/10.1038/s43247-020-00064-9.

    Article  Google Scholar 

  28. Mengis N, Partanen AI, Jalbert J, Matthews HD. 1.5 °c carbon budget dependent on carbon cycle uncertainty and future non-CO2 forcing. Sci Rep. 2018;8:5831. https://doi.org/10.1038/s41598-018-24241-1.

    Article  CAS  Google Scholar 

  29. Nicholls ZRJ, Gieseke R, Lewis J, Nauels A, Meinshausen M. Implications of non-linearities between cumulative CO2 emissions and CO2-induced warming for assessing the remaining carbon budget. Environ Res Lett 2020;15:074017. https://doi.org/10.1088/1748-9326/ab83af.

  30. Bowerman NHA, Frame DJ, Huntingford C, Lowe JA, Smith SM, Allen MR. The role of short-lived climate pollutants in meeting temperature goals. Nat Clim Chang. 2013;3:1021–4. https://doi.org/10.1038/nclimate2034.

    Article  CAS  Google Scholar 

  31. Rogelj J, Meinshausen M, Schaeffer M, Knutti R, Riahi K. Impact of short-lived non-CO2mitigation on carbon budgets for stabilizing global warming. Environ Res Lett. 2015;10:075001. https://doi.org/10.1088/1748-9326/10/7/075001.

  32. Goodwin P, Katavouta A, Roussenov VM, Foster GL, Rohling EJ, Williams RG. Pathways to 1.5 °C and 2 °C warming based on observational and geological constraints. Nat Geosci 2018;11. https://doi.org/10.1038/s41561-017-0054-8.

  33. Tokarska KB, Zickfeld K, Rogelj J. Path independence of carbon budgets when meeting a stringent global mean temperature target after an overshoot. Earth’s Futur. 2019;7:1283–95. https://doi.org/10.1029/2019EF001312.

    Article  Google Scholar 

  34. Huppmann D, Rogelj J, Kriegler E, Krey V, Riahi K. A new scenario resource for integrated 1.5 °C research. Nat Clim Chang. 2018;8:1027–30. https://doi.org/10.1038/s41558-018-0317-4.

    Article  Google Scholar 

  35. Allen MR, Shine KP, Fuglestvedt JS, Millar RJ, Cain M, Frame DJ, et al. A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. Npj Clim Atmos Sci. 2018;1:16. https://doi.org/10.1038/s41612-018-0026-8.

    Article  Google Scholar 

  36. Collins WJ, Frame DJ, Fuglestvedt JS, Shine KP. Stable climate metrics for emissions of short and long-lived species—combining steps and pulses. Environ Res Lett. 2020;15:024018. https://doi.org/10.1088/1748-9326/ab6039.

    Article  CAS  Google Scholar 

  37. Shine KP, Fuglestvedt JS, Hailemariam K, Stuber N. Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim Change. 2005;68:281–302. https://doi.org/10.1007/s10584-005-1146-9.

    Article  CAS  Google Scholar 

  38. Shine KP. The global warming potential—the need for an interdisciplinary retrial. Clim Change. 2009;96:467–72. https://doi.org/10.1007/s10584-009-9647-6.

    Article  Google Scholar 

  39. Rogelj J, Schleussner C-F. Unintentional unfairness when applying new greenhouse gas emissions metrics at country level. Environ Res Lett. 2019;14:114039. https://doi.org/10.1088/1748-9326/ab4928.

    Article  CAS  Google Scholar 

  40. Schleussner C-F, Nauels A, Schaeffer M, Hare W, Rogelj J. Inconsistencies when applying novel metrics for emissions accounting to the Paris Agreement. Environ Res Lett. 2019;14:124055. https://doi.org/10.1088/1748-9326/ab56e7.

    Article  CAS  Google Scholar 

  41. Jenkins S, Millar RJ, Leach N, Allen MR. Framing climate goals in terms of cumulative CO2-forcing-equivalent emissions. Geophys Res Lett. 2018;45:2795–804. https://doi.org/10.1002/2017GL076173.

    Article  CAS  Google Scholar 

  42. Alcaraz O, Buenestado P, Escribano B, Sureda B, Turon A, Xercavins J. Distributing the global carbon budget with climate justice criteria. Clim Change 2018;149:131–45. https://doi.org/10.1007/s10584-018-2224-0.

  43. Gignac R, Matthews HD. Allocating a 2°C cumulative carbon budget to countries. Environ Res Lett 2015;10:075004. https://doi.org/10.1088/1748-9326/10/7/075004.

  44. Holz C, Kartha S, Athanasiou T. Fairly sharing 1.5: national fair shares of a 1.5 °C-compliant global mitigation effort. Int Environ Agreements Polit Law Econ 2018;18:117–34. https://doi.org/10.1007/s10784-017-9371-z.

  45. van den Berg NJ, van Soest HL, Hof AF, den Elzen MGJ, van Vuuren DP, Chen W, et al. Implications of various effort-sharing approaches for national carbon budgets and emission pathways. Clim Change 2020;162:1805–22. https://doi.org/10.1007/s10584-019-02368-y.

  46. Hultman NE, Clarke L, Frisch C, Kennedy K, McJeon H, Cyrs T, et al. Fusing subnational with national climate action is central to decarbonization: the case of the United States. Nat Commun. 2020;11:5255. https://doi.org/10.1038/s41467-020-18903-w.

  47. Friedlingstein P, O’Sullivan M, Jones MW, Andrew RM, Hauck J, Olsen A, et al. Global Carbon Budget 2020. Earth Syst Sci Data 2020;123269–40. https://doi.org/10.5194/essd-12-3269-2020.

  48. Eby M, Zickfeld K, Montenegro A, Archer D, Meissner KJ, Weaver AJ. Lifetime of anthropogenic climate change: millennial time scales of potential CO2 and surface temperature perturbations. J Clim. 2009;22:2501–11. https://doi.org/10.1175/2008JCLI2554.1.

    Article  Google Scholar 

  49. Solomon S, Plattner G-K, Knutti R, Friedlingstein P. Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci. 2009;106:1704–9. https://doi.org/10.1073/PNAS.0812721106.

    Article  CAS  Google Scholar 

  50. Griscom BW, Adams J, Ellis PW, Houghton RA, Lomax G, Miteva DA, et al. Natural climate solutions. Proc Natl Acad Sci 2017;114:11645–50. https://doi.org/10.1073/pnas.1710465114.

  51. Anderegg WRL, Trugman AT, Badgley G, Anderson CM, Bartuska A, Ciais P, et al. Climate-driven risks to the climate mitigation potential of forests. Science 2020;(80)368:eaaz7005. https://doi.org/10.1126/science.aaz7005.

  52. Erb K-H, Kastner T, Plutzar C, Bais ALS, Carvalhais N, Fetzel T, et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 2018;553:73–6. https://doi.org/10.1038/nature25138.

  53. Matthews HD, Zickfeld K, Dickau M, MacIsaac AJ, Mathesius S, Nzotungicimpaye C-M, et al. Temporary nature-based carbon removal can lower peak warming in a well-below 2 °C scenario. Commun Earth Environ. 2022;3:65. https://doi.org/10.1038/s43247-022-00391-z.

    Article  Google Scholar 

  54. Aviso KB, Janairo JIB, Promentilla MAB, Tan RR. Prediction of CO2 storage site integrity with rough set-based machine learning. Clean Technol Environ Policy. 2019;21:1655–64. https://doi.org/10.1007/s10098-019-01732-x.

  55. Moriarty D, Dobeck L, Benson S. Rapid surface detection of CO2 leaks from geologic sequestration sites. Energy Procedia. 2014;63:3975–83. https://doi.org/10.1007/s10098-019-01732-x.

  56. Zhong Z, Sun AY, Yang Q, Ouyang Q. A deep learning approach to anomaly detection in geological carbon sequestration sites using pressure measurements. J Hydrol. 2019;573:885–94. https://doi.org/10.1016/j.jhydrol.2019.04.015.

  57. Wang J, Tchapmi LP, Ravikumar AP, McGuire M, Bell CS, Zimmerle D, et al. Machine vision for natural gas methane emissions detection using an infrared camera. Appl Energy. 2020;257:113998. https://doi.org/10.1016/j.apenergy.2019.113998.

  58. Harper AB, Powell T, Cox PM, House J, Huntingford C, Lenton TM, et al. Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nat Commun. 2018;9:2938. https://doi.org/10.1038/s41467-018-05340-z.

  59. Koven C, Arora VK, Cadule P, Fisher RA, Jones CD, Lawrence DM, et al. 23rd Century surprises: long-term dynamics of the climate and carbon cycle under both high and net negative emissions scenarios. Earth Syst Dynam Discuss. 2021;2021:1–32. https://doi.org/10.5194/esd-2021-23.

    Article  Google Scholar 

  60. Zickfeld K, MacDougall AH, Matthews HD. On the proportionality between global temperature change and cumulative CO2 emissions during periods of net negative CO2 emissions. Environ Res Lett. 2016;11:055006. https://doi.org/10.1088/1748-9326/11/5/055006.

    Article  CAS  Google Scholar 

  61. Matthews HD, Wynes S. Current global efforts are insufficient to limit warming to 15C. Science. 2022;376:1404–9. https://doi.org/10.1126/science.abo3378.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M. D. and H. D. M. acknowledge funding from the Concordia University and the Natural Science and Engineering Research Council of Canada (discovery grant to H. D. M.: RGPIN-2017-04159). K. B. T. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 820829 (CONSTRAIN project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Matthews.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Enhancing the Usability of Climate Science and Knowledge for Action

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dickau, M., Matthews, H.D. & Tokarska, K.B. The Role of Remaining Carbon Budgets and Net-Zero CO2 Targets in Climate Mitigation Policy. Curr Clim Change Rep 8, 91–103 (2022). https://doi.org/10.1007/s40641-022-00184-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40641-022-00184-8

Keywords

Navigation