Skip to main content
Log in

How candidate genes respond to aluminum toxicity in Citrus x limonia Osbeck?

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

In acidic soils, toxic aluminum (Al) inhibits root growth of sensitive species, including Citrus plants. In the Americas, rainfed Citrus plantations are highly dependent on unique rootstocks, such as the ‘Mandarin’ lime (Citrus x limonia Osbeck), which is tolerant to drought although sensitive to Al. It requires yearly lime application to grow on soils that are acidic (pH < 5.0) and rich in Al, especially in central and southeastern areas of Brazil. Despite this scenario, genes that are modulated by Al have not yet been searched in this species. Root apices of ‘Mandarin’ lime plants grown for 60 days in nutrient solutions either with 1480 μM Al3+ or 0 μM Al3+ were analyzed by RNA-seq, and differentially expressed candidate genes were validated by qRT-PCR. We highlight the transcriptional up-regulation of citrate synthase and citrate exudation by MATE (multidrug and toxic compound exudation) channels. Genes related to specialized metabolism, pectin methylesterification, auxin response, defense to biotic and abiotic stresses, cell division, suberin deposition, and nitrate uptake were also up-regulated by Al. The overview of up-regulated genes in ‘Mandarin’ lime not only validates its sensitivity to Al, but also points out targets for future research of Al resistance in this rootstock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

This manuscript contains supplementary material.

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  CAS  PubMed  Google Scholar 

  • Anders S, Pyl PT, Huber W (2015) HTSeq: a Phyton framework to work with high-througput sequencing data. Bioinformatics 31:166–169

    Article  CAS  PubMed  Google Scholar 

  • Audic S, Claverie J-M (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    Article  CAS  PubMed  Google Scholar 

  • Banhos OFAA, Brenda MO, da Veiga EB, Bressan ACG, Tanaka FAO, Habermann G (2016) Aluminum-induced decrease in CO2 assimilation in ‘Rangpur’lime is associated with low stomatal conductance rather than low photochemical performances. Sci Hortic 205:133–140

    Article  CAS  Google Scholar 

  • Bittencourt BMOC, Zanao FS, Habermann G (2020) Method to quantify aluminum-induced organic acids secretion by roots of plants in nutrient solution using GC–MS. Theor Exp Plant Physiol 32:121–131

    Article  CAS  Google Scholar 

  • Brunner I, Sperisen C (2013) Aluminum exclusion and aluminum tolerance in woody plants. Front Plant Sci 4:1–12. https://doi.org/10.3389/fpls.2013.00172

    Article  Google Scholar 

  • Cavalheiro MF, Gavassi MA, Silva GS, Nogueira MA, Silva CMS, Domingues DS, Habermann G (2020) Low root PIP1-1 and PIP2 aquaporins expression could be related to reduced hydration in ‘Rangpur’lime plants exposed to aluminium. Funct Plant Biol 47:112–121

    Article  CAS  PubMed  Google Scholar 

  • Clark RB (1975) Characterization of phosphatase of intact maize roots. J Agric Food Chem 23:458–460

    Article  CAS  PubMed  Google Scholar 

  • Cleland RE (2010) Auxin and cell elongation. In: Davies PJ (ed) Plant hormones—biosynthesis, signal transduction, action!, 3rd edn. Springer, Ithaca, NY, pp 204–220

    Google Scholar 

  • Daspute AA, Sadhukhan A, Tokizawa M, Kobayashi Y, Panda SK, Koyama H (2017) Transcriptional regulation of aluminum-tolerance genes in higher plants: clarifying the underlying molecular mechanisms. Front Plant Sci 8:1358. https://doi.org/10.3389/fpls.2017.01358

    Article  PubMed  PubMed Central  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.)(II. Aluminum-stimulated excretion of malic acid from root apices). Plant Physiol 103:695–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans ML, Ishikawa H, Estelle MA (1994) Responses of Arabidopsis roots to auxin studied with high temporal resolution: comparison of wild type and auxin-response mutants. Planta 194:215–222

    Article  CAS  Google Scholar 

  • Furukawa J, Yamaji N, Wang H et al (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091. https://doi.org/10.1093/pcp/pcm091

    Article  CAS  PubMed  Google Scholar 

  • Gavassi MA, Silva GS, Silva CMS, Thompson AJ, Macleod K, Oliveira PMR, Cavalheiro MF, Domingues DS, Habermann G (2021) NCED expression is related to increased ABA biosynthesis and stomatal closure under aluminum stress. Env Exp Bot 185:104404

    Article  CAS  Google Scholar 

  • Guo P, Qi Y-P, Yang L-T, Lai N-W, Ye X, Yang Y, Chen L-S (2017) Root adaptive responses to aluminum-treatment revealed by RNA-Seq in two Citrus species with different aluminum-tolerance. Front Plant Sci 8:330. https://doi.org/10.3389/fpls.2017.00330

    Article  PubMed  PubMed Central  Google Scholar 

  • Habermann G, Bressan-Smith R (2013) Will we have enough to eat in the near future?: what the Brazilian Society of Plant Physiology and The Global Plant Council have to do with it? Theor Exp Plant Physiol 25:244–250

    Article  Google Scholar 

  • Hager A (2003) Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. J Plant Res 116:483–505

    Article  CAS  PubMed  Google Scholar 

  • Hoekenga OA, Vision TJ, Shaff JE et al (2003) Identification and characterization of aluminum tolerance loci in Arabidopsis (Landsberg erecta× Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait. Plant Physiol 132:936–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horst WJ, Wang Y, Eticha D (2010) The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Ann Bot 106:185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang D, Gong Z, Chen X, Wang H, Tan R, Mao Y (2021) Transcriptomic responses to aluminum stress in tea plant leaves. Sci Rep 11:5800. https://doi.org/10.1038/s41598-021-85393-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H-X, Chen L-S, Zheng J-G et al (2008) Aluminum-induced effects on Photosystem II photochemistry in Citrus leaves assessed by the chlorophyll a fluorescence transient. Tree Physiol 28:1863–1871

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Tang N, Zheng J et al (2009) Phosphorus alleviates aluminum-induced inhibition of growth and photosynthesis in Citrus grandis seedlings. Physiol Plant 137:298–311

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Araki M, Goto S et al (2007) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kearse M, Moir R, Wilson A et al (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Biol 46:237–260

    Article  CAS  Google Scholar 

  • Kochian LV, Piñeros MA, Liu J, Magalhaes JV (2015) Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol 66:571–598

    Article  CAS  PubMed  Google Scholar 

  • Kopittke PM, Blamey FPC, Menzies NW (2008) Toxicities of soluble Al, Cu, and La include ruptures to rhizodermal and root cortical cells of cowpea. Plant Soil 303:217–227

    Article  CAS  Google Scholar 

  • Kopittke PM, Moore KL, Lombi E et al (2015) Identification of the primary lesion of toxic aluminum in plant roots. Plant Physiol 167:1402–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosma DK, Molina I, Ohlrogge JB, Pollard M (2012) Identification of an Arabidopsis fatty alcohol: caffeoyl-coenzyme A acyltransferase required for the synthesis of alkyl hydroxycinnamates in root waxes. Plant Physiol 160:237–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320

    Article  CAS  PubMed  Google Scholar 

  • Li R, Yu C, Li Y et al (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Myhre DL (1991) Differential response of Citrus rootstocks to aluminum levels in nutrient solutions: I. plant growth. J Plant Nutr 14:1223–1238

    Article  CAS  Google Scholar 

  • Liu J, Li Y, Wang W et al (2016) Genome-wide analysis of MATE transporters and expression patterns of a subgroup of MATE genes in response to aluminum toxicity in soybean. BMC Genomics 17:223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lüthen H, Böttger M (1993) The Role of Protons in the auxin-induced root growth inhibition—a critical reexamination. Plant Biol 106:58–63

    Google Scholar 

  • Mafra V, Kubo KS, Alves-Ferreira M et al (2012) Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions. PLoS ONE 7:e31263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magalhaes JV (2010) How a microbial drug transporter became essential for crop cultivation on acid soils : aluminium tolerance conferred by the multidrug and toxic compound extrusion (MATE) family. Ann Bot 106:199–203. https://doi.org/10.1093/aob/mcq115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortazavi A, Williams BA, McCue K et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Omote H, Hiasa M, Matsumoto T et al (2006) The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci 27:587–593

    Article  CAS  PubMed  Google Scholar 

  • Pereira WE, de Siqueira DL, Martínez CA, Puiatti M (2000) Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminium stress. J Plant Physiol 157:513–520

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45–e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman A, Bannigan A, Sulaman W et al (2007) Auxin, action and growth of the Arabidopsis thaliana primary root. Plant J 50:514–528. https://doi.org/10.1111/j.1365-313X.2007.3068.x

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro RV, Machado EC (2007) Some aspects of Citrus ecophysiology in subtropical climates: Re-visiting photosynthesis under natural conditions. Braz J Plant Physiol 19:393–411

    Article  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Ryan PR, Ditomaso JM, Kochian LV (1993) Aluminium toxicity in roots: An investigation of spatial sensitivity and the role of the root cap. J Exp Bot 44:437–446

    Article  CAS  Google Scholar 

  • Ryan PR, Tyerman SD, Sasaki T et al (2011) The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. J Exp Bot 62:9–20

    Article  CAS  PubMed  Google Scholar 

  • Sarruge JR, Haag HP (1974) Análises químicas em plantas. Escola Superior de Agricultura “Luiz de Queiroz.”

  • Sasaki T, Yamamoto Y, Ezaki B et al (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  CAS  PubMed  Google Scholar 

  • Schmohl N, Pilling J, Fisahn J, Horst WJ (2000) Pectin methylesterase modulates aluminium sensitivity in Zea mays and Solanum tuberosum. Physiol Plant 109:419–427. https://doi.org/10.1034/j.1399-3054.2000.100408.x

    Article  CAS  Google Scholar 

  • Sharma T, Dreyer I, Kochian L, Piñeros MA (2016) The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security.

  • Silva CMS, Cavalheiro MF, Bressan ACG, Carvalho BMO, Banhos OFAA, Purgatto E, Harakava R, Tanaka FAO, Habermann G (2019) Aluminum-induced high IAA concentration may explain the Al susceptibility in Citrus limonia. Plant Growth Regul 87:123–137

    Article  CAS  Google Scholar 

  • Silva GS, Gavassi MA, Nogueira MA, Habermann G (2018) Aluminum prevents stomatal conductance from responding to vapor pressure deficit in Citrus limonia. Environ Exp Bot 155:662–671

    Article  CAS  Google Scholar 

  • Singh S, Tripathi DK, Singh S et al (2017) Toxicity of aluminium on various levels of plant cells and organism: a review. Environ Exp Bot 137:177–193

    Article  CAS  Google Scholar 

  • Spartz AK, Ren H, Park MY et al (2014) SAUR Inhibition of PP2C-D Phosphatases Activates Plasma Membrane H + -ATPases to Promote Cell Expansion in Arabidopsis. Plant Cell 26:2129–2142. https://doi.org/10.1105/tpc.114.126037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun P, Tian Q, Chen J, Zhang W (2010) Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin. J Exp Bot 61:347–356. https://doi.org/10.1093/jxb/erp306

    Article  CAS  PubMed  Google Scholar 

  • Tarazona S, Furio-Tari P, Turra D, Pietro A, Nueda MJ, Ferrer A, Conesa A (2015) Data quality aware analysis fo differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res 43:e140. https://doi.org/10.1093/nar/gkv711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. In: Plant-soil interactions at low pH: Principles and management. Springer, pp 5–19

  • Wang J, Chen D, Lei Y et al (2014) Citrus sinensis annotation project (CAP): a comprehensive database for sweet orange genome. PLoS ONE 9:e87723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y-Y, Hsu P-K, Tsay Y-F (2012) Uptake, allocation and signaling of nitrate. Trends Plant Sci 17:458–467

    Article  CAS  PubMed  Google Scholar 

  • Wehr JB, Blamey FPC, Hanna JV et al (2010) Hydrolysis and speciation of Al bound to pectin and plant cell wall material and its reaction with the dye chrome azurol S. J Agric Food Chem 58:5553–5560

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Chen L-L, Ruan X et al (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66

    Article  CAS  PubMed  Google Scholar 

  • Yang L-T, Jiang H-X, Tang N, Chen L-S (2011) Mechanisms of aluminum-tolerance in two species of citrus: secretion of organic acid anions and immobilization of aluminum by phosphorus in roots. Plant Sci 180:521–530

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Geng X, He C et al (2014) TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis. Plant Cell 26:2889–2904. https://doi.org/10.1105/tpc.114.127993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao XQ, Shen RF (2018) Aluminum–nitrogen interactions in the soil–plant system. Front Plant Sci 9:807

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Lu X, Li C, Zhang B, Zhang C, Zhang X-s, Ding Z (2018) Auxin efflux carrier ZmPGP1 mediates root growth inhibition under aluminum stress. Plant Physiol 177:819–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X, He K, Kleist T et al (2015) Anion channel SLAH3 functions in nitrate-dependent alleviation of ammonium toxicity in Arabidopsis. Plant Cell Environ 38:474–486

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Wang H, Zhu Y et al (2015) Genome-wide transcriptomic and phylogenetic analyses reveal distinct aluminum-tolerance mechanisms in the aluminum-accumulating species buckwheat (Fagopyrum tataricum). BMC Plant Biol 15:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu XF, Sun Y, Zhang BC et al (2014) TRICHOME BIREFRINGENCE-LIKE27 Affects aluminum sensitivity by modulating the O-acetylation of xyloglucan and aluminum-binding capacity in Arabidopsis. Plant Physiol 166:181–189. https://doi.org/10.1104/pp.114.243808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Sanicitrus Nursery (Araras, São Paulo state, Brazil) for providing us with the ‘Mandarin’ lime plants.

Funding

Brazilian National Council for Scientific and Technological Development (CNPq) for financial support (#474169/2013–8 grant to GH) and a research fellowship (#307431/2020–7 grant to GH). São Paulo Research Foundation (Fapesp) for a PhD scholarship granted to CMS Silva (Fapesp #2013/11370–3).

Author information

Authors and Affiliations

Authors

Contributions

Conceived the idea and designed the experiment: CMSS and GH. Performed the experiments: CMSS. Analyzed data: CMSS, AB-C and DSD. Provided reagents, instruments, material, and analytical tools: GH and DSD. Wrote the manuscript: CMSS, DSD and GH.

Corresponding author

Correspondence to Gustavo Habermann.

Ethics declarations

Conflict of interest

The authors declare no competing interests. G. Habermann is the Editor in Chief of TxPP and, when the manuscript was submitted, he was aware it was handled fairly by not being able to influence the editorial process of the submission, during any stage.

Consent for publication

All authors agree with the content of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 1976 kb)

Supplementary file2 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, C.M.S., Banguela-Castillo, A., Domingues, D.S. et al. How candidate genes respond to aluminum toxicity in Citrus x limonia Osbeck?. Theor. Exp. Plant Physiol. 34, 409–423 (2022). https://doi.org/10.1007/s40626-022-00253-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-022-00253-1

Keywords

Navigation