Skip to main content
Log in

Tissue accumulation patterns and concentrations of potassium, phosphorus, and carboxyfluorescein translocated from pine seed to the root

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Potassium (K), phosphorous (P), and carboxyfluorescein (CF) accumulate in functionally distinct tissues within the pine seedling root cortex.

Seedlings of Pinus pinea translocate exogenous CF and endogenous K and P from the female gametophyte/cotyledons to the growing radicle. Following unloading in the root tip, these materials accumulate in characteristic spatial patterns. Transverse sections of root tips show high levels of P in a circular ring of several layers of inner cortical cells. K and CF are minimal in the high P tissue. In contrast, high levels of K and CF accumulate in outer cortical cells, and in the vascular cylinder. These patterns are a property of living tissue because they change after freeze–thaw treatment, which kills the cells and results in uniform distribution of K and P. K concentration can be reduced to undetectable levels by incubation of roots in 100 mM NaCl. Inductively coupled plasma optical emission spectrometry (ICP-OES) analysis and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS) of root segments both reliably determine K and P concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figs. 1–4
Figs. 5–10
Figs. 11–15
Figs. 19–21
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Abbreviations

CF:

Carboxyfluorescein

CFDA:

Carboxyfluorescein diacetate

ICP-OES:

Inductively coupled plasma optical emission spectrometry

RAM:

Root apical meristem

SEM/EDS:

Scanning electron microscopy/energy-dispersive X-ray spectroscopy

References

  • Barlow PW (1976) Towards an understanding of behavior of root meristems. J Theor Biol 57:433–451

    Article  PubMed  CAS  Google Scholar 

  • Barlow PW, Parker JS (1996) Microtubular cytoskeleton and root morphogenesis. Plant Soil 187:23–36

    Article  CAS  Google Scholar 

  • Baum SF, Dubrovsky JG, Rost TL (2002) Apical organization and maturation of the cortex and vascular cylinder in Arabidopsis thaliana (Brassicaceae) roots. Am J Bot 89:908–920

    Article  PubMed  Google Scholar 

  • Benfey PN, Scheres B (2000) Root development. Curr Biol 10:R813–R815

    Article  PubMed  CAS  Google Scholar 

  • Bucking H, Heyser W (2000a) Subcellular compartmentation of elements in non-mycorrhizal and mycorrhizal roots of Pinus sylvestris: an X-ray microanalytical study. I. The distribution of phosphate. New Phytol 145:311–320

    Article  CAS  Google Scholar 

  • Bucking H, Heyser W (2000b) Subcellular compartmentation of elements in non-mycorrhizal and mycorrhizal roots of Pinus sylvestris: an X-ray microanalytical study. II. The distribution of calcium, potassium and sodium. New Phytol 145:321–331

    Article  CAS  Google Scholar 

  • Byrne JM (1973) Root apex of Malva sylvestris 3. Lateral root development and quiescent center. Am J Bot 60:657–662

    Article  Google Scholar 

  • Cartwright HN, Humphries JA, Smith LG (2009) A receptor-like protein that promotes polarization of an asymmetric cell division in maize. Science 323:649–651

    Article  PubMed  CAS  Google Scholar 

  • Chen ZC, Yamaji N, Fujii-Kashino M, Ma JF (2016) A cation-chloride cotransporter gene is required for cell elongation and osmoregulation in rice. Plant Physiol 171:494–507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clowes FAL (1956) Nucleic acids in root apical meristems of Zea. New Phytol 55:29–35

    Article  CAS  Google Scholar 

  • Clowes FAL (1976) The root apex. In: Yeoman MM (ed) Cell division in higher plants. Academic Press, New York, pp 254–284

    Google Scholar 

  • Doerner P (2000) Root patterning: does auxin provide positional cues? Curr Biol 10:R201–R203

    Article  PubMed  CAS  Google Scholar 

  • Drew MC, Webb J, Saker LR (1990) Regulation of K+ uptake and transport to the xylem in barley roots—K+ distribution determined by electron probe X-ray microanalysis of frozen-hydrated cells. J Exp Bot 41:815–825

    Article  CAS  Google Scholar 

  • Dreyer I, Gomez-Porras JL, Riedelsberger J (2017) The potassium battery: a mobile energy source for transport processes in plant vascular tissues. New Phytol 216:1049–1053

    Article  PubMed  Google Scholar 

  • Dučić T, Thieme J, Polle A (2012) Phosphorus compartmentalization on the cellular level of douglas fir root as affected by Mn toxicity: a synchrotron-based FTIR approach. Spectroscopy 27:265–272

    Article  CAS  Google Scholar 

  • Ensikat H-J, Weigend M (2013) Cryo-scanning electron microscopy of plant samples without metal coating, utilizing bulk conductivity. Microscopy Anal 27:7–10

    Google Scholar 

  • Esau K (1965) Plant anatomy. Wiley, New York, London, Sydney

    Google Scholar 

  • Esau K (1977) Anatomy of seed plants, 2nd edn. Wiley, New York

    Google Scholar 

  • Giaquinta RT, Lin W, Sadler NL, Franceschi VR (1983) Pathway of phloem unloading of sucrose in corn roots. Plant Physiol 72:362–367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harris JM (2015) Abscisic acid: hidden architect of root system structure. Plants 4:548–572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hasenstein KH, Evans ML (1988) Effects of cations on hormone transport in primary roots of Zea mays. Plant Physiol 86:890–894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He CJ, Morgan PW, Drew MC (1996) Transduction of an ethylene signal is required for cell death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia. Plant Physiol 112:463–472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hinde P, Richardson R, Koyro H-W, Tomos AD (1998) Quantitative X-ray microanalysis of solutes in individual plant cells: a comparison of microdroplet and in situ frozen-hydrated data. J Microscopy 191:303–310

    Article  CAS  Google Scholar 

  • Hodson MJ, Sangster AG (1989) Subcellular-localization of mineral-deposits in the roots of wheat (Triticum aestivum L). Protoplasma 151:19–32

    Article  Google Scholar 

  • Irish VF, Sussex IM (1992) A fate map of the Arabidopsis embryonic shoot apical meristem. Development 115:745–753

    Google Scholar 

  • Jeschke WD, Stelter W (1976) Measurement of longitudinal ion profiles in single roots of Hordeum and Atriplex by use of flameless atomic-absorption spectroscopy. Planta 128:107–112

    Article  PubMed  CAS  Google Scholar 

  • Jia HF, Zhang ST, Wang LZ, Yang YX, Zhang HY, Cui H, Shao HF, Xu GH (2017) OsPht1;8, a phosphate transporter, is involved in auxin and phosphate starvation response in rice. J Exp Bot 68:5057–5068

    Article  PubMed  CAS  Google Scholar 

  • Jones GW, Gorham J (2002) Intra- and inter-cellular compartmentation of ions. In: Läuchli A, Lüttge U (eds) Salinity: environment—plants—molecules. Springer, Dordrecht, pp 159–180

    Google Scholar 

  • Kende H, Zeevaart JAD (1997) The five “classical” plant hormones. Plant Cell 9:1197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kerk NM, Jiang KN, Feldman LJ (2000) Auxin metabolism in the root apical meristem. Plant Physiol 122:925–932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kochian L, Lucas W (1983) Potassium transport in corn roots. 2. The significance of the root periphery. Plant Physiol 73:208–214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Läuchli A, Spurr AR, Epstein E (1971) Lateral transport of ions into the xylem of corn roots. Plant Physiol 48:118–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahonen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y (2000) A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 14:2938–2943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marcon C, Malik WA, Walley JW, Shen ZX, Paschold A, Smith LG, Piepho HP, Briggs SP, Hochholdinger F (2015) A high-resolution tissue-specific proteome and phosphoproteome atlas of maize primary roots reveals functional gradients along the root axes. Plant Physiol 168:233–246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nieves-Cordones M, Aleman F, Martinez V, Rubio F (2014) K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. J Plant Physiol 171:688–695

    Article  PubMed  CAS  Google Scholar 

  • Oparka KJ, Duckett CM, Prior DAM, Fisher DB (1994) Real-time imaging of phloem unloading in the root-tip of Arabidopsis. Plant J 6:759–766

    Article  Google Scholar 

  • Overvoorde P, Fukaki H, Beeckman T (2002) Auxin control of root development. Cold Spring Harb Perspect Biol 2:a001537. https://doi.org/10.1101/cshperspect.a001537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pesacreta TC (2015) F-actin distribution in root primary tissues of several seed plant species. Am J Bot 102:1422–1433

    Article  PubMed  CAS  Google Scholar 

  • Pesacreta TC, Parthasarathy MV (1984) Microfilament bundles in the roots of a conifer, Chamaecyparis obtusa. Protoplasma 121:54–64

    Article  Google Scholar 

  • Pesacreta TC, Purpera MA (2014) Light microscopy survey of extant gymnosperm root protophloem and comparison with basal angiosperms. Botany-Botanique 92:388–401

    Article  Google Scholar 

  • Petrasek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688

    Article  PubMed  CAS  Google Scholar 

  • Pritchard J, Williams G, Wyn Jones RG, Tomos AD (1989) Radial turgor pressure profiles in growing and mature zones of wheat roots - a modification of the pressure probe. J Exp Bot 40:567–571

    Article  Google Scholar 

  • Ross-Elliott TJ, Jensen KH, Haaning KS, Wagner BM, Knoblauch J, Howell AH, Mullendore DL, Monteith AG, Paultre D, Yan DW, Otero S, Bourdon M, Sager R, Lee JY, Helariutta Y, Knoblauch M, Oparka KJ (2017) Phloem unloading in roots is convective and regulated by the phloem pole pericycle. eLife 6:e24125

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruan YL, Llewellyn DJ, Furbank RT (2001) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell 13:47–60

    PubMed  PubMed Central  CAS  Google Scholar 

  • Salazar-Henao JE, Velez-Bermudez IC, Schmidt W (2016) The regulation and plasticity of root hair patterning and morphogenesis. Development 143:1848–1858

    Article  PubMed  CAS  Google Scholar 

  • Schiefelbein JW, Masucci JD, Wang HY (1997) Building a root: the control of patterning and morphogenesis during root development. Plant Cell 9:1089–1098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi M, Nozoye T, Kitajima N, Fukuda N, Hokura A, Terada Y, Nakai I, Ishimaru Y, Kobayashi T, Nakanishi H, Nishizawa NK (2009) In vivo analysis of metal distribution and expression of metal transporters in rice seed during germination process by microarray and X-ray fluorescence imaging of Fe, Zn, Mn and Cu. Plant Soil 325:39–48

    Article  CAS  Google Scholar 

  • Truernit E (2017) Plant physiology: unveiling the dark side of phloem translocation. Curr Biol 27:R348–R350

    Article  PubMed  CAS  Google Scholar 

  • Van der Graaff E, Laux T, Rensing SA (2009) The WUS homeobox-containing (WOX) protein family. Genome Biol 10:248. https://doi.org/10.1186/gb-2009-10-12-248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Steveninck RFM, Armstrong WD, Peters PD, Hall TA (1976) Ultrastructural localization of ions III. Distribution of chloride in mesophyll cells of mangrove (Aegiceras corniculatum Blanco). Aust J Plant Physiol 3:367–376

    Article  Google Scholar 

  • Vicente-Agullo F, Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, Grabov A (2004) Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant J 40:523–535

    Article  PubMed  CAS  Google Scholar 

  • Vilaine F, Kerchev P, Clement G, Batailler B, Cayla T, Bill L, Gissot L, Dinant S (2013) Increased expression of a phloem membrane protein encoded by NHL26 alters phloem export and sugar partitioning in Arabidopsis. Plant Cell 25:1689–1708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Viola R, Roberts AG, Haupt S, Gazzani S, Hancock RD, Marmiroli N, Machray GC, Oparka KJ (2001) Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell 13:385–398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA 93:10510–10514

    Article  PubMed  CAS  Google Scholar 

  • Wilcox H (1954) Primary organization of active and dormant roots of noble fir, Abies procera. Am J Bot 41:812–821

    Article  Google Scholar 

  • Wilcox H (1962) Growth studies of the root of incense cedar Libocedrus decurrens. I. The origin and development of primary tissues. Am J Bot 49:221–236

    Article  Google Scholar 

  • Yeo AR, Kramer D, Läuchli A, Gullasch J (1977) Ion distribution in salt-stressed mature Zea mays roots in relation to ultrastructure and retention of sodium. J Exp Bot 28:17–29

    Article  CAS  Google Scholar 

  • Yuan W, Zhang D, Song T, Xu F, Lin S, Xu W, Li Q, Zhu Y, Liang J, Zhang J (2017) Arabidopsis plasma membrane H+-ATPase genes AHA2 and AHA7 have distinct and overlapping roles in the modulation of root tip H+ efflux in response to low-phosphorus stress. J Exp Bot 68:1731–1741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Pesacreta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pesacreta, T.C., Hasenstein, K.H. Tissue accumulation patterns and concentrations of potassium, phosphorus, and carboxyfluorescein translocated from pine seed to the root. Planta 248, 393–407 (2018). https://doi.org/10.1007/s00425-018-2897-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-2897-7

Keywords

Navigation