Skip to main content
Log in

Use of allometric models to estimate leaf area in Hymenaea courbaril L.

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

The indirect estimation of leaf area (LA) in plants using non-destructive methods is a useful tool in the biological and agronomic studies, to determining the size of the capture apparatus of light energy by plants. This study aimed to determine equations that better estimate the LA of Hymenaea courbaril L. using the non-destructive methods based on leaf maximum measurements (length and width). In addition, we intended to check the accuracy of LA reading when compared with destructive methods obtained by the image analysis software (ImageJ®) and leaf area meter (LI-3100 Li-Cor). About 1000 leaves were sampled from one year old plants. To validate the models, we used an extra sample of 500 leaves with distinct age, randomly selected and collected from different canopy levels of young and adult trees. The variability observed was extreme, with values of LA for each leaf ranging from 1650 to 14018 mm2. The LA values obtained with the LI-3100 integrator were higher than those obtained by the ImageJ® software at 2.7 % and with a high correlation between them. Among the models studied to estimate the LA based on non-destructive measurements, it can be said that linear and quadratic models as well as the ellipse formula can be safely used without differing significantly from the values obtained through the LI-3100 analyzer and ImageJ® software. Thus, it is possible to use non-destructive measurements for estimating the LA of H. courbaril with accuracy using allometric models, as well as ensuring that the ImageJ® software can replace the LI-3100 analyzer to determine the leaf area at the species investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

W:

Width

L:

Length

LW:

Length × width product

R 2 :

Determination coefficient

SDR:

Standard deviation of residues

MSE:

Mean square error

MIN:

Minimum

MAX:

Maximum

MED:

Medium

CV:

Coefficient of variation

ASY:

Asymmetry

KUR:

Kurtosis

WS:

Wilks–Shapiro

F:

Calculated F

MSE:

Sum of the square error

PRESS:

Sum of squared residual prediction

SSE:

Sum of squared error

MSPR:

Mean square error of prediction

References

  • Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophot Int 11:36–42

    Google Scholar 

  • Antunes WC, Pompelli MF, Carretero DM, Damatta FM (2008) Allometric models for non-destructive leaf area estimation in coffee (Coffea arabica and Coffea canephora). Ann Appl Biol 153:33–40

    Article  Google Scholar 

  • Bianco S, Bianco MS, Carvalho LB (2008) Estimate of Ageratum conyzoides leaf area using leaf blade linear measurements. Acta Sci Agron 30:519–523

    Article  Google Scholar 

  • Blanco FF, Folegatti MV (2005) Estimation of leaf area for greenhouse cucumber by linear measurements under salinity and grafting. Sci Agric 62:305–309

    Article  Google Scholar 

  • Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  CAS  PubMed  Google Scholar 

  • Bonser SP, Aarssen LW (2009) Interpreting reproductive allometry: individual strategies of allocation explain size-dependent reproduction in plant populations. Persp Plant Ecol Evol System 1:31–40

    Article  Google Scholar 

  • Bosco LC, Bergamaschi H, Cardoso LS, Paula VA, Casamali B (2012) Selection of regression models for estimating leaf area of ‘Royal gala’ and ‘Fuji suprema’ apple trees under hail net and in open sky. Rev Bras Frutic 34:504–514

    Article  Google Scholar 

  • Buttaro D, Rouphael Y, Rivera CM, Colla G, Gonnella M (2015) Simple and accurate allometric for leaf area estimation in Vitis vinifera L. genotypes. Photosynthetica 53:1–8

    Article  Google Scholar 

  • Candido WS, Coelho MFB, Maia SSS, Cunha CSM, Silva RCP (2013) Model to estimate the leaf area of Combretum leprosum Mart. Acta Agron 62:37–41

    Google Scholar 

  • Cargnelutti Filho A, Lopes SJ, Toebe M, Silveira TR, Schwantes IA (2011) Sample size to estimate the Pearson correlation coefficient among characters of Crambe abyssinica. Rev Cien Agron 42:149–158

    Article  Google Scholar 

  • Carvalho SJP, Christoffoleti PJ (2007) Leaf area estimation of five Amaranthus species using leaf blade linear dimensions. Planta Dan 25:317–324

    Article  Google Scholar 

  • Cermák J, Nadezhdina N, Trcala M, Simon J (2014) Open field-applicable instrumental methods for structural and functional assessment of whole trees and stands. iForest: Biogeo For 8:226–278

    Article  Google Scholar 

  • Cristofori V, Rouphael Y, Mendoza-De Gyves E, Bigniami C (2007) A simple model for estimating leaf area of hazelnut from linear measurements. Sci Hortic 113:221–225

    Article  Google Scholar 

  • Cristofori V, Fallovo C, Mendoza-De Gyves E, Rivera CM, Bignami C, Rouphael Y (2008) Non-destructive, analogue model for leaf area estimation in persimmon (Diospyros kaki L. f.) based on leaf length and width measurement. Eur J Hort Sci 73:216–221

    Google Scholar 

  • Demirsoy H, Demirsoy L, Ozturk A (2005) Improved model for the non-destructive estimation of strawberry leaf area. Fruits 60:69–73

    Article  Google Scholar 

  • Elsner EA, Jubb GL Jr (1988) Leaf area estimation of concord grape leaves from simple linear measurements. Am J Enol Vitic 39:95–97

    Google Scholar 

  • Fallovo C, Cristofori V, Mendoza-De Gyves E, Rivera CM, Rea R, Fanasca S, Bignami C, Sassine Y, Rouphael Y (2008) Leaf area estimation model for small fruits from linear measurements. HortScience 43:2263–2267

    Google Scholar 

  • Fascella G, Maggiore P, Zizzo GV, Colla G, Rouphael Y (2009) A simple and low-cost method for leaf area measurement in Euphorbia x lomi Thai hybrids. Adv Hort Sci 23:57–60

    Google Scholar 

  • Fascella G, Darwich S, Rouphael Y (2013) Validation of leaf area prediction model proposed for rose. Chilean J Agric Res 73:73–76

    Article  Google Scholar 

  • Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciênc Agrotec 35:1039–1042

    Google Scholar 

  • Francis JK (1990) Hymenaea courbaril L. Algarrobo, locust. Institute of Tropical Forestry, (SO-ITF-SM-27), USDA Forest Service, Puerto Rico, pp 279-283

  • Giuffrida F, Rouphael Y, Toscano S, Scuderi D, Romano D, Rivera CM, Colla G, Leonardi C (2011) A simple model for nondestructive leaf area estimation in bedding plants. Photosynthetica 49:380–388

    Article  Google Scholar 

  • Gorchov DL, Palmeirim JM, Ascorra CF (2004) Dispersal of seeds of Hymenaea courbaril (Fabaceae) in a logged rain forest in the Peruvian Amazonian. Acta Amaz 34:251–259

    Article  Google Scholar 

  • Gower ST, Kucharik CJ, Norman JM (1999) Direct and indirect estimation of leaf area index, f APAR, and net primary production of terrestrial ecosystems. Remote Sens Environ 70:29–51

    Article  Google Scholar 

  • Hinnah FD, Heldwein AB, Maldaner IC, Loose LH, Lucas DDP, Bortoluzzi MP (2014) Leaf area of eggplant according to leaf dimensions. Bragantia 73:213–218

    Article  Google Scholar 

  • Homolová L, Lukeš P, Malenovský Z, Lhotáková Z, Kaplan V, Hanus J (2013) Measurement methods and variability assessment of the Norway spruce total leaf area: implications for remote sensing. Trees 27:111–112

    Article  Google Scholar 

  • Igathinathane C, Prakash VSS, Padma U, Babu GR, Womac AR (2006) Interactive computer software development for leaf area measurement. Comp Electr Agric 51:1–16

    Article  Google Scholar 

  • Kandiannan K, Parthasarathy U, Krishnamurthy KS, Thankamani CK, Srinivasan V (2009) Modeling individual leaf area of ginger (Zingiber officinale Roscoe) using leaf length and width. Sci Hortic 120:532–537

    Article  Google Scholar 

  • Khan MNI, Suwa R, Hagihara A (2005) Allometric relationships for estimating the aboveground phytomass and leaf area of mangrove Kandelia candel (L.) Druce trees in the Manko Wetland, Okinawa Island, Japan. Trees 19:266–272

    Article  Google Scholar 

  • Kumar R (2009) Calibration and validation of regression model for non-destructive leaf area estimation of saffron (Crocus sativus L.). Sci Hortic 122:142–145

    Article  Google Scholar 

  • Laubhann D, Eckmüllner O, Sterba H (2010) Applicability of non-destructive substitutes for leaf area in different stands of Norway spruce (Picea abies L. Karst.) focusing on traditional forest crown measures. For Ecol Manage 260:1498–1506

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Jin G, Chen JM, Qi Y (2015) Evaluating optical measurements of leaf area index against litter collection in a broadleaved-Korean pine forest in China. Trees 29:59–73

    Article  Google Scholar 

  • Lorenzi H (1998) Árvores brasileiras– Manual de identificação e cultivo de plantas arbóreas do Brasil, 2ª edn. Editora Plantarum, Nova Odessa

    Google Scholar 

  • Lu HY, Lu CT, Wei ML, Chan LF (2004) Comparison of different methods for nondestructive leaf area estimation in taro. Agron J 96:448–453

    Article  Google Scholar 

  • Mason EG, Diepstraten M, Pinjuv GL, Lasserre JP (2012) Comparison of direct and indirect leaf area index measurements of Pinus radiata D. Don. Agric For Meteorol 166–167:113–119

    Article  Google Scholar 

  • Mendoza-De Gyves E, Rouphael Y, Cristofori V, Rosana Mira F (2007) A non-destructive, simple and accurate model for estimating the individual leaf area of kiwi (Actinidia deliciosa). Fruits 62:171–176

    Article  Google Scholar 

  • Miranda C, Royo JB (2003) A statistical model to estimate potential yields in peach before bloom. J Am Soc Hort Sci 128:297–301

    Google Scholar 

  • Miranda C, Royo JB (2004) Statistical model estimates potential yields in ‘Golden Delicious’ and ‘Royal Gala’ apples before bloom. J Am Soc Hort Sci 129:20–25

    Google Scholar 

  • NeSmith DS (1992) Estimating summer squash leaf area nondestructively. HortScience 27:77

    Google Scholar 

  • Neter J, Kutner MH, Nachtshein CJ, Wasserman W (1996) Applied linear regression models, 3rd edn. Irwin, Homewood

    Google Scholar 

  • Pandey SK, Singh H (2011) Simple, cost-effective method for leaf area estimation. J Bot 2011:6. doi:10.1155/2011/658240

    Google Scholar 

  • Peksen E (2007) Non-destructive leaf area estimation model for faba bean (Vicia faba L.). Sci Hortic 113:322–328

    Article  Google Scholar 

  • Pompelli MF, Antunes WC, Ferreira DTRG, Cavalcante PPGS, Wanderley-Filho HCL, Endres L (2012) Allometric models for non-destructive leaf area estimation of the Jatropha curcas L. Biomass Bioenerg 36:77–85

    Article  Google Scholar 

  • Rivera CM, Rouphael Y, Cardarelli M, Colla G (2007) A simple and accurate equation for estimating individual leaf area of eggplant from linear measurements. Eur J Hort Sci 72:228–230

    Google Scholar 

  • Robbins SN, Pharr DM (1987) Leaf area prediction models for cucumber from linear measurements. HortScience 22:1264–1266

    Google Scholar 

  • Rouphael Y, Rivera CM, Cardarelli M, Fanasca S, Colla G (2006) Leaf area estimation from linear measurements in zucchini plants of different ages. J Hort Sci Biotechnol 81:238–241

    Google Scholar 

  • Rouphael Y, Colla G, Fanasca S, Karam F (2007) Leaf area estimation of sunflower leaves from simple linear measurements. Photosynthetica 45:306–308

    Article  Google Scholar 

  • Rouphael Y, Mouneimne AH, Ismail A, Mendoza-de-Gyves E, Rivera CM, Colla G (2010a) Modeling individual leaf area of rose (Rosa hybrida L.) based on leaf length and width measurement. Photosynthetica 48:9–15

    Article  Google Scholar 

  • Rouphael Y, Mouneimne AH, Rivera CM, Cardarelli M, Marucci A, Colla G (2010b) Allometric models for non-destructive leaf area estimation in grafted and engrafted watermelon (Citrullus lanatus Thunb). J Food Agric Environ 8:161–165

    Google Scholar 

  • Schmildt ER, Amaral JAT, Santos JS, Schmildt O (2015) Allometric model for estimating leaf area in clonal varieties of coffee (Coffea canephora). Rev Ciênc Agron 46:740–748

    Article  Google Scholar 

  • Silva PSL, Cunha TMS, Souza AD, Paula VFS (2007) Equations for leaf area estimation in some species adapted to the Brazilian semi-arid. Rev Caatinga 20:18–23

    Google Scholar 

  • Silva SHMG, Lima JD, Bendini HN, Nomura ES, Moraes WS (2008) Estimating leaf area in anthurium with regression functions. Ciênc Rur 38:243–246

    Article  Google Scholar 

  • Souza MC, Amaral CL, Habermann G, Alves PLCA, Costa FB (2015) Non-destructive model to estimate the leaf area of multiple Vochysiaceae species. Braz J Bot 38:1–7

    Article  Google Scholar 

  • Srámek M, Cermák J (2012) The vertical leaf distribution of Ulmus laevis Pall. Trees 26:1781–1792

    Article  Google Scholar 

  • Tamayo LMA, Gonzalez DMA, Garces YJ (2008) Pharmacological properties of the carob tree (Hymenaea courbaril Linneaus) interesting for the food industry. Rev Lassalista Invest 5:100–111

    Google Scholar 

  • Toebe M, Cargnelutti Filho A, Loose LH, Heldwein AB, Zanon AJ (2012) Leaf area of snap bean (Phaseolus vulgaris L.) according to leaf dimensions. Semina 33:2491–2500

    Google Scholar 

  • Tsialtas JT, Maslaris N (2005) Leaf area estimation in a sugar beet cultivar by linear models. Photosynthetica 43:477–479

    Article  Google Scholar 

  • Tsialtas JT, Koundouras S, Zioziou E (2008) Leaf area estimation by simple measurements and evaluation of leaf area prediction models in cabernet-Sauvignon grapevine leaves. Photosynthetica 46:452–456

    Article  Google Scholar 

  • Williams L, Martinson TE (2003) Nondestructive leaf area estimation of ‘Niagara’ and ‘DeChaunac’ grapevines. Sci Hortic 98:493–498

    Article  Google Scholar 

Download references

Acknowledgments

To the Foundation for Research Support of the Alagoas State (FAPEAL), to the Reference Center on Recovery of Degraded Areas (CRAD) of the Lower São Francisco, and to UFAL/Arapiraca, AL, for logistical, technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Vieira Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, J.C.C., Costa, R.N., Silva, D.M.R. et al. Use of allometric models to estimate leaf area in Hymenaea courbaril L.. Theor. Exp. Plant Physiol. 28, 357–369 (2016). https://doi.org/10.1007/s40626-016-0072-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-016-0072-8

Keywords

Navigation