Skip to main content

Advertisement

Log in

Deficit irrigation in table grape: eco-physiological basis and potential use to save water and improve quality

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

Table grapes are one of the most productive and economically relevant fruit crops worldwide. Table grape production characterizes by high water productivity but also by an intensive use of water, which puts pressure on local/regional water resources, particularly in dry regions (e.g. South Mediterranean, Northeast and Southeast of Brazil). Climate change and scarcer water resources make the problem more severe in those areas. Meanwhile, consumer’s demand for quality and sustainable production is increasing and environmental issues are becoming critical for competiveness. In this context, table grape “industry” needs solutions to promote water savings, sustain yield, quality and profit. Deficit irrigation emerged as a tool to mitigate the negative impact of drought on yield and quality and to save water in modern irrigated viticulture. Our aim is to describe the potential benefits of deficit irrigation in table grape production namely in what concerns water savings and berry quality. Previous literature shows that the effect of deficit irrigation on water savings varies with the genotype (scion and rootstock), the environmental conditions as well as the adopted agronomic strategies. This paper provides a comprehensive and up-to-date overview on the eco-physiological basis of deficit irrigation strategies and their role on growth, yield and berry quality (biophysical and biochemical) in table grape. Complementary crop management strategies to guarantee a more sustainable use of water (e.g. higher water use efficiency), improved berry quality and smaller environmental impact of table grape production are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) FAO Irrigation and Drainage Paper No. 56. Crop Evapotranspiration. Guidelines for computing crop water requirements. FAO, Rome. ftp://biosfera.dea.ufv.br/gabriel/lue_teste/doc/fao56.pdf

  • Alsina MM, Smart DR, Bauerle T, de Herralde F, Biel C, Stockert C, Negron C, Save R (2011) Seasonal changes of whole root system conductance by a drought-tolerant grape root system. J Exp Bot 62:99–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antolín MC, Baigorri H, Luis ID et al (2003) ABA during reproductive development in non-irrigated grapevines (Vitis vinifera L. cv. Tempranillo). Aust J Grape Wine Res 9:169–176. doi:10.1111/j.1755-0238.2003.tb00266.x

    Article  Google Scholar 

  • Aragüés R, Medina ET, Clavería I et al (2014) Regulated deficit irrigation, soil salinization and soil solidification in a table grape vineyard drip-irrigated with moderately saline waters. Agric Water Manag 134:84–93. doi:10.1016/j.agwat.2013.11.019

    Article  Google Scholar 

  • ATGA (2015) Australian Table Grape Association Inc, Australian Grape Growing Areas. http://www.australiangrapes.com.au/__data/assets/pdf_file/0017/17225/HAL0462_Grapes_Industry_Booklet.pdf

  • Avidan A, Hazan A, Kopyt M, Ton Y (2005) Application of the phytomonitoring technique for table grapes. In: Proceedings of the international workshop on advances in grapevine and wine research, Venosa

  • Basile B, Marsal J, Mata M et al (2011) Phenological sensitivity of cabernet sauvignon to water stress: vine physiology and berry composition. Am J Enol Vitic 62:452–461

    Article  CAS  Google Scholar 

  • Bastiaannsen WGM, Pelgrum H, Soppe RWO et al (2008) Thermal-infrared technology for local and regional scale irrigation analyses in horticultural systems. Acta Hortic 792:33–46. doi:10.17660/ActaHortic.2008.792.2

    Article  Google Scholar 

  • Bellvert J, Zarco-Tejada PJ, Gonzalez-Dugo V et al (2013) Scheduling vineyard irrigation based on mapping leaf water potential from airborne thermal imagery. In: Stafford JV (ed) Precision agriculture’13. Wageningen Academic Publishers, Wageningen, pp 699–704

    Google Scholar 

  • Berdeja M, Nicolas P, Kappel C et al (2015) Water limitation and rootstock genotype interact to alter grape berry metabolism through transcriptome reprogramming. Hortic Res 2(15012):1–13. doi:10.1038/hortres.2015.12

    CAS  Google Scholar 

  • Bonada M, Sadras V, Moran M, Fuentes S (2013) Elevated temperature and water stress accelerate mesocarp cell death and shrivelling, and decouple sensory traits in Shiraz berries. Irrig Sci 31:1317–1331. doi:10.1007/s00271-013-0407-z

    Article  Google Scholar 

  • Bondada B, Shutthanandan J (2012) Understanding differential responses of grapevine (Vitis vinifera L.) leaf and fruit to water stress and recovery following re-watering. Am J Plant Sci 3(09):1232–1240

    Article  Google Scholar 

  • Bota J, Tomás M, Flexas J et al (2016) Differences among grapevine cultivars in their stomatal behavior and water use efficiency under progressive water stress. Agric Water Manag. doi:10.1016/j.agwat.2015.07.016

    Google Scholar 

  • Bravdo BA (2005) Physiological mechanisms involved in the production of non-hydraulic root signals by partial rootzone drying—a review. Acta Hortic 689(267–276):2005. doi:10.17660/ActaHortic.2005.689.31

    Google Scholar 

  • Bravdo B (2012) Effects of salinity and irrigation with desalinated effluent and sea water on production and fruit quality of grapevines (review and update). Acta Hortic 931:245–258. doi:10.17660/ActaHortic.2012.931.27

    Google Scholar 

  • Camargo U, Mandelli F, Conceição MAF, Tonietto J (2012) Grapevine performance and production strategies in tropical climates. As J Food Agro-Ind 5(04):257–269

    Google Scholar 

  • Cameron KD, Teece MA, Smart LB (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol 140:176–183. doi:10.1104/pp.105.069724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonell-Bejerano P, Carvalho LC, Eiras Dias JE et al (2016) Exploiting Vitis genetic diversity to manage with stress. In: Gerós H, Chaves M, Medrano H, Delrot S (eds) Grapevine in a changing environment: a molecular and ecophysiological perspective. Wiley-Blackwell, Hoboken, pp 347–380

    Chapter  Google Scholar 

  • Castellarin SD, Matthews MA, Di Gaspero G, Gambetta GA (2007a) Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 227:101–112. doi:10.1007/s00425-007-0598-8

    Article  CAS  PubMed  Google Scholar 

  • Castellarin SD, Pfeiffer A, Sivilotti P et al (2007b) Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant, Cell Environ 30:1381–1399. doi:10.1111/j.1365-3040.2007.01716.x

    Article  CAS  Google Scholar 

  • Champa W (2015) Pre and postharvest practices for quality improvement of table grapes (Vitis vinifera L.). Found Sri Lanka 43(1):3–9

    Article  Google Scholar 

  • Chaves MM, Santos TP, Souza CR et al (2007) Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann Appl Biol 150:237–252. doi:10.1111/j.1744-7348.2006.00123.x

    Article  Google Scholar 

  • Chaves MM, Zarrouk O, Francisco R et al (2010) Grapevine under deficit irrigation: hints from physiological and molecular data. Ann Bot 105:661–676. doi:10.1093/aob/mcq030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciraolo G, Cammalleri C, Capodici F et al (2012) Mapping evapotranspiration on vineyards: a comparison between Penman-Monteith and energy balance approaches for operational purposes. In: Neale CMU, Maltese A (eds) SPIE remote sensing. International Society for Optics and Photonics, Bellingham

    Google Scholar 

  • Codex Standard (2011) Table Grapes No. 255, adoption year 2007, amended year 2011. Publishing Physics Web. http://www.codexalimentarius.org/standards/list-of-standards/en/?provide=standards&orderField=fullReference&sort=asc&num1=CODEX. Accessed 30 Aug 2015

  • Cohen Y, Alchanatis V, Meron M et al (2005) Estimation of leaf water potential by thermal imagery and spatial analysis. J Exp Bot 56:1843–1852. doi:10.1093/jxb/eri174

    Article  CAS  PubMed  Google Scholar 

  • Cominelli E, Galbiati M, Tonelli C, Bowler C (2009) Water: the invisible problem. EMBO Rep 10:671–676. doi:10.1038/embor.2009.148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comiran F, Bergamaschi H, Heckler BMM et al (2012) Microclimate and production of “Niagara Rosada” grapevines in organic cultivation under plastic covering. Rev Bras Frutic 34:152–159. doi:10.1590/S0100-29452012000100021

    Article  Google Scholar 

  • Conceição MAF, Maia JDG, Mandarini Neto J (1998) Informações para a irrigação da videira na região de Jales, SP. Embrapa Uva e Vinho, Comunicado Técnico 30:1–8

    Google Scholar 

  • Conceição MAF, de Souza RT, Zeoli JDJS, De Paula MVB (2012) Coeficiente de cultura (Kc) para videira com e sem cobertura vegetal no solo. Irrigation 1:234. doi:10.15809/irriga.2012v1n01p234

    Article  Google Scholar 

  • Conceição MAF, Savini TC, Souza RT de, dos Santos CP (2014) Irrigation cutoff during ripening stage of Niagara Rosada grapes. In: INOVAGRI international meeting 2, 2014, Fortaleza Anais. Fortaleza INOVAGRI 2896–2901. doi:10.12702/ii.inovagri.2014-a390

  • Conde A, Regalado A, Rodrigues D et al (2015) Polyols in grape berry: transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine. J Exp Bot 66:889–906. doi:10.1093/jxb/eru446

    Article  CAS  PubMed  Google Scholar 

  • Conesa MR, de la Rosa JM, Artés-Hernández F et al (2015) Long-term impact of deficit irrigation on the physical quality of berries in “Crimson Seedless” table grapes. J Sci Food Agric 95:2510–2520. doi:10.1002/jsfa.6983

    Article  CAS  PubMed  Google Scholar 

  • Conesa MR, Falagán N, de la Rosa JM et al (2016) Post-veraison deficit irrigation regimes enhance berry coloration and health-promoting bioactive compounds in “Crimson Seedless” table grapes. Agric Water Manag 163:9–18. doi:10.1016/j.agwat.2015.08.026

    Article  Google Scholar 

  • Cortell JM, Halbleib M, Gallagher AV, Righetti TL, Kennedy JA (2007) Influence of vine vigor on grape (Vitis vinifera L. cv. Pinot Noir) anthocyanins. 1. Anthocyanin concentration and composition in fruit. J Agric Food Chem 55:6575–6584

    Article  CAS  PubMed  Google Scholar 

  • Costa JM, Ortuño MF, Chaves MM (2007) Deficit irrigation as a strategy to save water: physiology and potential application to horticulture. J Integr Plant Biol 49:1421–1434. doi:10.1111/j.1672-9072.2007.00556.x

    Article  Google Scholar 

  • Costa JM, Lopes CM, Rodrigues ML et al (2012a) Deficit irrigation in Mediterranean vineyards—a tool to increase water use efficiency and to control grapevine and berry growth. Acta Hortic 931:159–170

    Article  Google Scholar 

  • Costa JM, Ortuño MF, Lopes CM, Chaves MM (2012b) Grapevine varieties exhibiting differences in stomatal response to water deficit. Funct Plant Biol 39:179. doi:10.1071/FP11156

    Article  Google Scholar 

  • Costa JM, Grant OM, Chaves MM (2013) Thermography to explore plant–environment interactions. J Exp Bot 64:3937–3949. doi:10.1093/jxb/ert029

    Article  CAS  PubMed  Google Scholar 

  • Costa JM, Vaz M, Escalona J et al (2016) Modern viticulture in southern Europe: vulnerabilities and strategies for adaptation to water scarcity. Agric Water Manag. doi:10.1016/j.agwat.2015.08.021

    Google Scholar 

  • Cubero S, Diago MP, Blasco J et al (2015) A new method for assessment of bunch compactness using automated image analysis. Aust J Grape Wine Res 21:101–109. doi:10.1111/ajgw.12118

    Article  Google Scholar 

  • Curtis MA (2013) Influence of cover crop residue management on soil moisture, vine growth, and productivity in a pre-production vineyard in the Willamette Valley. Dissertation, Oregon State University. http://hdl.handle.net/1957/40103

  • Dai ZW, Ollat N, Gomes E et al (2011) Ecophysiological, genetic, and molecular causes of variation in grape berry weight and composition: a review. Am J Enol Vitic 62:413–425. doi:10.5344/ajev.2011.10116

    Article  CAS  Google Scholar 

  • Dai ZW, Léon C, Feil R et al (2013) Metabolic profiling reveals coordinated switches in primary carbohydrate metabolism in grape berry (Vitis vinifera L.), a non-climacteric fleshy fruit. J Exp Bot 64:1345–1355. doi:10.1093/jxb/ers396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies WJ, Zhang J (1991) Root Signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol 42:55–76. doi:10.1146/annurev.pp.42.060191.000415

    Article  CAS  Google Scholar 

  • Davies WJ, Tardieu F, Trejo CL (1994) How do chemical signals work in plants that grow in drying soil? Plant Physiol 104:309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies C, Boss P, Robinson S (1997) Treatment of grape berries, a nonclimacteric fruit with a synthetic auxin, retards ripening and alters the expression of developmentally regulated genes. Plant Physiol 115:1155–1161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies WJ, Bacon MA, Thompson DS et al (2000) Regulation of leaf and fruit growth in plants growing in drying soil: exploitation of the plants’ chemical signalling system and hydraulic architecture to increase the efficiency of water use in agriculture. J Exp Bot 51:1617–1626. doi:10.1093/jexbot/51.350.1617

    Article  CAS  PubMed  Google Scholar 

  • Davies WJ, Kudoyarova G, Hartung W (2005) Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant’s response to drought. J Plant Growth Regul 24:285–295. doi:10.1007/s00344-005-0103-1

    Article  CAS  Google Scholar 

  • de Castro Teixeira AH, de Azevedo PV, da Silva BB, Soares JM (1999) Consumo hídrico e coeficiente de cultura da videira na região de Petrolina, PE. Rev Bras Eng Agríc Ambient 3(3):413–416

    Article  Google Scholar 

  • de Mello LMR (2015) Vitivinicultura brasileira: Panorama 2014. Bento Gonçalves: Embrapa Uva e Vinho. Comunicado Técnico 175, 6 p

  • de Souza CR, Maroco JP, dos Santos TP et al (2005) Impact of deficit irrigation on water use efficiency and carbon isotope composition (delta13C) of field-grown grapevines under Mediterranean climate. J Exp Bot 56:2163–2172. doi:10.1093/jxb/eri216

    Article  PubMed  Google Scholar 

  • de Souza CR, da Mota RV, Dias FAN et al (2015) Physiological and agronomical responses of Syrah grapevine under protected cultivation. Bragantia 74(3):270–278. doi:10.1590/1678-4499.0047

    Article  Google Scholar 

  • Della-Marta PM, Haylock MR, Luterbacher J, Wanner H (2007) Doubled length of western European summer heat waves since 1880. J Geophys Res 112:D15103. doi:10.1029/2007JD008510

    Article  Google Scholar 

  • Deluc LG, Quilici DR, Decendit A et al (2009) Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genom 10:212. doi:10.1186/1471-2164-10-212

    Article  CAS  Google Scholar 

  • Demir KOK (2014) A review on grape growing in tropical regions. Turk J Agric For (Special Issue) 1:1236–1241

    Google Scholar 

  • DGADR (2015) Direção geral de Agricultura e Desenvolimento Rural-Uso eficiente da água. Tabelas de dotação de rega. http://www.dgadr.mamaot.pt/rec/acao-7-5-uso-eficiente-da-agua

  • Dodd IC (2005) Root-to-shoot signalling: assessing the roles of “Up” in the up and down world of long-distance signalling in plants. Plant Soil 274:251–270. doi:10.1007/s11104-004-0966-0

    Article  CAS  Google Scholar 

  • Dodd IC (2009) Rhizosphere manipulations to maximize “crop per drop” during deficit irrigation. J Exp Bot 60:2454–2459. doi:10.1093/jxb/erp192

    Article  CAS  PubMed  Google Scholar 

  • Dodd IC, Theobald JC, Bacon MA, Davies WJ (2006) Alternation of wet and dry sides during partial rootzone drying irrigation alters root-to-shoot signalling of abscisic acid. Funct Plant Biol 33:1081. doi:10.1071/FP06203

    Article  CAS  Google Scholar 

  • Domingos S, Scafidi P, Cardoso V et al (2015) Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways. Front Plant Sci 6:1–18. doi:10.3389/fpls.2015.00457

    Article  Google Scholar 

  • dos Santos TP, Lopes CM, Rodrigues ML et al (2003) Partial rootzone drying: effects on growth and fruit quality of field-grown grapevines (Vitis vinifera). Funct Plant Biol 30:663. doi:10.1071/FP02180

    Article  Google Scholar 

  • Dry P, Loveys B (1999) Grapevine shoot growth and stomatal conductance are reduced when part of the root system is dried. Vitis 38:151–156

    Google Scholar 

  • Dry PR, Loveys BR, Düring H (2000) Partial drying of the rootzone of grape. II. Changes in the pattern of root development. Vitis 39:9–12

    Google Scholar 

  • Du T, Kang S, Zhang J et al (2008) Water use efficiency and fruit quality of table grape under alternate partial root-zone drip irrigation. Agric Water Manag 95:659–668. doi:10.1016/j.agwat.2008.01.017

    Article  Google Scholar 

  • Du T, Kang S, Yan B, Zhang J (2013) Alternate furrow irrigation: a practical way to improve grape quality and water use efficiency in Arid Northwest China. J Integr Agric 12:509–519. doi:10.1016/S2095-3119(13)60252-X

    Article  Google Scholar 

  • Du F, Deng W, Yang M et al (2015) Protecting grapevines from rainfall in rainy conditions reduces disease severity and enhances profitability. Crop Prot 67:261–268. doi:10.1016/j.cropro.2014.10.024

    Article  Google Scholar 

  • Ejsmentewicz T, Balic I, Sanhueza D et al (2015) Comparative study of two table grape varieties with contrasting texture during cold storage. Molecules 20:3667–3680. doi:10.3390/molecules20033667

    Article  CAS  PubMed  Google Scholar 

  • El-Ansary D, Okamoto G (2008) Improving table grape quality with less irrigation water in Japan: partial root-zone drying versus regulated deficit irrigation. Acta Hortic 265–271:2008. doi:10.17660/ActaHortic.2008.792.30

    Google Scholar 

  • Elliott J, Deryng D, Müller C et al (2014) Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc Natl Acad Sci USA 111:3239–3244. doi:10.1073/pnas.1222474110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • English M (1990) Deficit irrigation. I: analytical framework. J Irrig Drain Eng 116:399–412. doi:10.1061/(ASCE)0733-9437(1990)116:3(399)

    Article  Google Scholar 

  • Escalona JM, Flexas J, Medrano H (1999) Stomatal and non-stomatal limitations of photosynthesis under water stress in field-grown grapevines. Aust J Plant Physiol 26:421. doi:10.1071/PP99019

    Article  Google Scholar 

  • EU (2015) Agricultural production. http://ec.europa.eu/eurostat/statistics-explained/index.php/Agricultural_production_-_orchards#Vines_producing_table_grapes. Accessed 30 Aug 2015

  • Faci JM, Blanco O, Medina ET, Martínez-Cob A (2014) Effect of post veraison regulated deficit irrigation in production and berry quality of Autumn Royal and Crimson table grape cultivars. Agric Water Manag 134:73–83. doi:10.1016/j.agwat.2013.11.009

    Article  Google Scholar 

  • FAO (2011) The state of the world’s land and water resources for food and agriculture (SOLAW)—managing systems at risk. FAO and Earthscan. www.fao.org/docrep/017/i1688e/i1688e.pdf

  • Fereres E, Soriano MA (2007) Deficit irrigation for reducing agricultural water use. J Exp Bot 58:147–159. doi:10.1093/jxb/erl165

    Article  CAS  PubMed  Google Scholar 

  • Fernandes de Oliveira A, Nieddu G (2013) Deficit irrigation strategies in Vitis vinifera L. cv. Cannonau under Mediterranean climate. Part II—cluster microclimate and anthocyanin accumulation patterns. S Afr J Enol Vitic 34:184–195

    Google Scholar 

  • Ferrandino A, Lovisolo C (2014) Abiotic stress effects on grapevine (Vitis vinifera L.): focus on abscisic acid-mediated consequences on secondary metabolism and berry quality. Environ Exp Bot 103:138–147. doi:10.1016/j.envexpbot.2013.10.012

    Article  CAS  Google Scholar 

  • Ferrara G, Mazzeo A, Matarrese AMS et al (2015) Application of abscisic acid (S-ABA) and sucrose to improve colour, anthocyanin content and antioxidant activity of cv. Crimson Seedless grape berries. Aust J Grape Wine Res 21:18–29. doi:10.1111/ajgw.12112

    Article  CAS  Google Scholar 

  • Ferreira EA, Regina MdA, Chalfun NNJ, Antunes LEC (2004) Harvest anticipation for “Niagara Rosada” grapes in southern Minas Gerais, Brazil. Ciência e Agrotecnologia 28:1221–1227. doi:10.1590/S1413-70542004000600001

    Google Scholar 

  • Ferreyra R, Selles G, Silva H et al (2006) Efecto del agua aplicada en las relaciones hídricas y productividad de la vid “Crimson Seedless”. Pesqui Agropecuária Bras 41:1109–1118. doi:10.1590/S0100-204X2006000700006

    Article  Google Scholar 

  • Fiorani F, Rascher U, Jahnke S, Schurr U (2012) Imaging plants dynamics in heterogenic environments. Curr Opin Biotechnol 23:227–235. doi:10.1016/j.copbio.2011.12.010

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Barón M, Bota J et al (2009) Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri × V. rupestris). J Exp Bot 60(8):2361–2377. doi:10.1093/jxb/erp069

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Galmes J, Galle A et al (2010) Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Aust J Grape Wine Res 16:106–121

    Article  CAS  Google Scholar 

  • Fraga H, Santos JA, Malheiro AC et al (2015) Climatic suitability of Portuguese grapevine varieties and climate change adaptation. Int J Climatol. doi:10.1002/joc.4325

    Google Scholar 

  • FRUITLINKCO (2015) http://www.fruitlinkco.com/home/starting-of-new-harvest-for-seedless-grapes/#respond

  • Gago J, Douthe C, Coopman RE et al (2015) UAVs challenge to assess water stress for sustainable agriculture. Agric Water Manag 153:9–19. doi:10.1016/j.agwat.2015.01.020

    Article  Google Scholar 

  • Galbignani M, Merli MC, Magnanini E et al (2016) Gas exchange and water-use efficiency of cv. Sangiovese grafted to rootstocks of varying water-deficit tolerance. Irrig Sci 34:105–116

    Article  Google Scholar 

  • Gálvez R, Callejas R, Reginato G, Peppi MC (2014) Irrigation schedule on table grapes by stem water potential and vapor pressure deficit allows to optimize water use. Cienc Tec Vitivinic 29:60–70. doi:10.1051/ctv/20142902060

    Google Scholar 

  • Gambetta GA, Manuck CM, Drucker ST et al (2012) The relationship between root hydraulics and scion vigour across Vitis rootstocks: what role do root aquaporins play? J Exp Bot 63:6445–6455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Tejero IF, Durán-Zuazo VH, Muriel-Fernández JL (2014) Towards sustainable irrigated Mediterranean agriculture: implications for water conservation in semi-arid environments. Water Int 39:635–648. doi:10.1080/02508060.2014.931753

    Article  Google Scholar 

  • Geerts S, Raes D (2009) Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric Water Manag 96:1275–1284. doi:10.1016/j.agwat.2009.04.009

    Article  Google Scholar 

  • Gerardi MH, Zimmerman MC (2005) Wastewater pathogens. Wiley, Hoboken. doi:10.1002/0471710431.ch1

    Google Scholar 

  • Gerling C (2015) Environmentally sustainable viticulture: practices and practicality. Apple Academic Press, Canada

    Book  Google Scholar 

  • Granett J, Walker MA, Kocsis L, Omer AD (2001) Biology and management of grape phylloxera. Annu Rev Entomol 46:387–412. doi:10.1146/annurev.ento.46.1.387

    Article  CAS  PubMed  Google Scholar 

  • Grant OM, Ochagavía H, Baluja J et al (2016) Thermal imaging to detect spatial and temporal variation in the water status of grapevine (Vitis vinifera L.). J Hortic Sci Biotech 91(1):44–55

    Article  Google Scholar 

  • Greer DH (2012) Modelling leaf photosynthetic and transpiration temperature-dependent responses in Vitis vinifera cv. Semillon grapevines growing in hot, irrigated vineyard conditions. AoB Plants 2012:13. doi:10.1093/aobpla/pls009

    Article  CAS  Google Scholar 

  • Greer DH, Weedon MM (2013) The impact of high temperatures on Vitis vinifera cv. Semillon grapevine performance and berry ripening. Front Plant Sci 4:491. doi:10.3389/fpls.2013.00491

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayman P, Longbottom M, McCarthy M, Thomas D (2012) Managing grapevines during heatwaves. GWRDC, Australia

    Google Scholar 

  • Hochberg U, Degu A, Fait A, Rachmilevitch S (2013) Near isohydric grapevine cultivar displays higher photosynthetic efficiency and photorespiration rates under drought stress as compared with near anisohydric grapevine cultivar. Physiol Plant 147:443–452. doi:10.1111/j.1399-3054.2012.01671.x

    Article  CAS  PubMed  Google Scholar 

  • INTRACEN (2015) World table grape market in adjustment phase. Publishing Physics Web. http://www.intracen.org/itc/blogs/market-insider/world-table-grape-market-in-adjustment-phase/. Accessed 10 Dec 2015

  • Intrigliolo DS, Pérez D, Risco D et al (2012) Yield components and grape composition responses to seasonal water deficits in Tempranillo grapevines. Irrig Sci 30:339–349. doi:10.1007/s00271-012-0354-0

    Article  Google Scholar 

  • INE (2014) Instituto Nacional de Estatística—Estatísticas Agrícolas 2014, Portugal. https://www.ine.pt/ngt_server/attachfileu.jsp?look_parentBoui=232643723&att_display=n&att_download=y

  • INNOVINE (2015) Innovine, combining innovation in vineyard management and genetic diversity for a sustainable European viticulture. http://www.innovine.eu/home.html. Accessed 10 Dec 2015

  • INV (2014) Instituto Nacional de Vitivinicultura, Argentina. http://www.inv.gov.ar/inv_contenidos/pdf/estadisticas/anuarios/2014/Registro14.pdf

  • IPCC (2013) Climate Change 2013: the physical science basis. I Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, First. Cambridge University Press, Cambridge

  • Jogaiah S, Oulkar DP, Vijapure AN et al (2013) Influence of canopy management practices on fruit composition of wine grape cultivars grown in semi-arid tropical region of India. Afr J Agric Res 8(26):3462–3472. doi:10.5897/AJAR12.7307

    Google Scholar 

  • Jones HG (2004) Irrigation scheduling: advantages and pitfalls of plant-based methods. J Exp Bot 55:2427–2436. doi:10.1093/jxb/erh213

    Article  CAS  PubMed  Google Scholar 

  • Jones HG, Grant O (2016) Remote sensing and other imaging technologies to monitor grapevine performance. In: Gerós H, Chaves MM, Medrano H, Delrot S (eds) Grapevine under environmental stress: from ecophysiology to molecular mechanisms. Wiley-Blackwell, Hoboken, pp 179–201

    Google Scholar 

  • Jones HG, Vaughan R (2010) Remote sensing of vegetation: principles, techniques, and applications. Oxford University Press, Oxford

    Google Scholar 

  • Jones GV, Reid R, Aleksander Vilks (2012) Climate, grapes, and wine: Structure and suitability in a variable and changing climate. In: The geography of wine—regions, terroir and techniques, pp 109–133. doi:10.1007/978-94-007-0464-0

  • Kamiloğlu Ö, Polat A, Durgaç C (2011) Comparison of open field and protected cultivation of five early table grape cultivars under Mediterranean conditions. Turk J Agric For 35:491–499. doi:10.3906/tar-1002-718

    Google Scholar 

  • Kang S, Zhang J (2004) Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency. J Exp Bot 55:2437–2446. doi:10.1093/jxb/erh249

    Article  CAS  PubMed  Google Scholar 

  • Kicherer A, Roscher R, Herzog K et al (2013) BAT (Berry Analysis Tool): a high-throughput image interpretation tool to acquire the number, diameter, and volume of grapevine berries. Vitis 52(3):129–135

    Google Scholar 

  • Knipfer T, Eustis A, Brodersen C et al (2015) Grapevine species from varied native habitats exhibit differences in embolism formation/repair associated with leaf gas exchange and root pressure. Plant, Cell Environ 38:1503–1513. doi:10.1111/pce.12497

    Article  Google Scholar 

  • Kopyt M, Ton Y (2005) Phytomonitoring technique for table grapes. PhyTech, Rehovot

    Google Scholar 

  • Koundouras S, Hatzidimitriou E, Karamolegkou M et al (2009) Irrigation and rootstock effects on the phenolic concentration and aroma potential of Vitis vinifera L. cv. cabernet sauvignon grapes. J Agric Food Chem 57:7805–7813. doi:10.1021/jf901063a

    Article  CAS  PubMed  Google Scholar 

  • Kuhn N, Guan L, Dai ZW et al (2014) Berry ripening: recently heard through the grapevine. J Exp Bot 65:4543–4559. doi:10.1093/jxb/ert395

    Article  PubMed  Google Scholar 

  • Lanyon D, Hansen D, Cass A (2004) The effect of soil properties on vine performance. CSIRO Land and Water Technical Report, Australia

  • Laurenson S, Bolan NS, Smith E, McCarthy M (2012) Review: use of recycled wastewater for irrigating grapevines. Aust J Grape Wine Res 18:1–10. doi:10.1111/j.1755-0238.2011.00170.x

    Article  CAS  Google Scholar 

  • Levidow L, Zaccaria D, Maia R et al (2014) Improving water-efficient irrigation: prospects and difficulties of innovative practices. Agric Water Manag 146:84–94. doi:10.1016/j.agwat.2014.07.012

    Article  Google Scholar 

  • Liu G-T, Wang J-F, Cramer G et al (2012) Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress. BMC Plant Biol 12:10. doi:10.1186/1471-2229-12-174

    Article  CAS  Google Scholar 

  • Lopes CM, Costa JM, Monteiro A et al (2014) Varietal behavior under water and heat stress. In: Proceedings of the congress of OENOVITI international network, Germany, pp 50–56

  • Loveys B, Stoll M, Davies W (2004) Physiological approaches to enhance water use efficiency in agriculture: exploiting plant signalling in novel irrigation practice. In: Bacon MA (ed) Water use efficiency in plant biology. University of Lancaster, Lancaster, pp 113–141

    Google Scholar 

  • Lovisolo C, Schubert A (2000) Downward shoot positioning affects water transport in field-grown grapevines. Vitis 39(2):49–53

    Google Scholar 

  • Lovisolo C, Tramontini S, Flexas J, Schubert A (2008) Mercurial inhibition of root hydraulic conductance in Vitis spp. rootstocks under water stress. Environ Exp Bot 63(1):178–182

    Article  CAS  Google Scholar 

  • MAGRAMA (2015) Boletín Mensual de Estadística, Julio 2015, España. 60 p. http://www.magrama.gob.es/es/estadistica/temas/publicaciones/bme-2015-7-julio_tcm7-390999.pdf

  • Mancosu N, Snyder R, Kyriakakis G, Spano D (2015) Water scarcity and future challenges for food production. Water 7:975–992. doi:10.3390/w7030975

    Article  Google Scholar 

  • Marinho LB, Rodrigues JJV, Soares JM et al (2009) Production and quality of “Superior Seedless” grapes under irrigation restrictions during berry maturation. Pesqui Agropecuária Bras 44:1682–1691. doi:10.1590/S0100-204X2009001200018

    Article  Google Scholar 

  • Marsal J, Mata M, Arbonés A et al (2002) Regulated deficit irrigation and rectification of irrigation scheduling in young pear trees: an evaluation based on vegetative and productive response. Eur J Agron 17:111–122. doi:10.1016/S1161-0301(02)00002-3

    Article  Google Scholar 

  • Martínez Barba MC (2015) Estudio comparativo de las relaciones hídricas y producción en uva de mesa bajo riego deficitario (RD) y desecación parcial de raíces (DPR) Efecto del déficit continuo y controlado. Dissertation, Universidad Politécnica de Cartagena. http://hdl.handle.net/10317/5022

  • Matese A, Di Gennaro SF (2015) Technology in precision viticulture: a state of the art review. Int J Wine Res 7:69. doi:10.2147/IJWR.S69405

    Article  Google Scholar 

  • McCarthy MG, Loveys BR, Dry PR, Stoll M (2002) Regulated deficit irrigation and partial rootzone drying as irrigation management techniques for grapevines. In: Deficit irrigation practices, 22nd edn. FAO Water Reports, Rome, pp 79–87

  • Medrano H, Flexas J, Ribas-Carbó M, Gulías J (2010) Measuring water use efficiency in grapevines. In: Methodologies and results in grapevine research. Springer, Dordrecht, pp 123–134

  • Medrano H, Tomás M, Martorell S et al (2015) Improving water use efficiency of vineyards in semi-arid regions—a review. Agron Sustain Dev 35:499–517. doi:10.1007/s13593-014-0280-z

    Article  Google Scholar 

  • Molden D, Oweis T, Steduto P et al (2010) Improving agricultural water productivity: between optimism and caution. Agric Water Manag 97:528–535. doi:10.1016/j.agwat.2009.03.023

    Article  Google Scholar 

  • Moratiel R, Martínez-Cob A (2012) Evapotranspiration of grapevine trained to a gable trellis system under netting and black plastic mulching. Irrig Sci 30:167–178. doi:10.1007/s00271-011-0275-3

    Article  Google Scholar 

  • Morison JI, Baker N, Mullineaux P, Davies W (2008) Improving water use in crop production. Philos Trans R Soc B Biol Sci 363:639–658. doi:10.1098/rstb.2007.2175

    Article  CAS  Google Scholar 

  • Myburgh P (2003) Responses of Vitis vinifera L. cv. Sultanina to water deficits during various pre-and post-harvest phases under semi-arid conditions. S Afr J Enol Vitic 24:25–33

    Google Scholar 

  • Netzer Y (2010) A model for irrigation of vineyards under limited water availability. Thesis, Hebrew University of Jerusalem

  • Netzer Y, Yao C, Shenker M, Bravdo B (2005) Water consumption of “Superior” grapevines grown in a semiarid region. Acta Hortic 689:399–406. doi:10.17660/ActaHortic.2005.689.47

    Article  Google Scholar 

  • Netzer Y, Yao C, Shenker M et al (2009) Water use and the development of seasonal crop coefficients for Superior Seedless grapevines trained to an open-gable trellis system. Irrig Sci 27:109–120. doi:10.1007/s00271-008-0124-1

    Article  Google Scholar 

  • Netzer Y, Shenker M, Schwartz A (2014) Effects of irrigation using treated wastewater on table grape vineyards: dynamics of sodium accumulation in soil and plant. Irrig Sci 32:283–294. doi:10.1007/s00271-014-0430-8

    Article  Google Scholar 

  • Niculcea M, López J, Sánchez-Díaz M, Carmen Antolín M (2014) Involvement of berry hormonal content in the response to pre- and post-veraison water deficit in different grapevine (Vitis vinifera L.) cultivars. Aust J Grape Wine Res 20:281–291. doi:10.1111/ajgw.12064

    Article  CAS  Google Scholar 

  • Nóbrega HPV (2013) Utilização de redes de ensombramento para monda de bagos em uva de mesa. Dissertation, Instituto Superior de Agronomia

  • Novello V, de Palma L (2008) Growing grapes under cover. Acta Hortic 785:353–362. doi:10.17660/ActaHortic.2008.785.44

    Article  Google Scholar 

  • Ollat N, Peccoux A, Papura D et al (2016) In: Gerós H, Chaves M, Medrano H, Delrot S (eds) Grapevine in a changing environment: a molecular and ecophysiological perspective. Wiley-Blackwell, Hoboken, pp 68–108

    Chapter  Google Scholar 

  • Peacock W, Jensen F, Dokoozlian N (1994) Training-trellis systems and canopy management of table grapes in California. University of California. http://cetulare.ucdavis.edu/files/82023.pdf. Accessed 9 Nov 2015

  • Peppi MC, Fidelibus MW, Dokoozlian N (2006) Abscisic acid application timing and concentration affect firmness, pigmentation, and color of ‘flame seedless’ grapes. HortScience 41(6):1440–1445

    CAS  Google Scholar 

  • Peppi MC, Walker MA, Fidelibus MW (2008) Application of abscisic acid rapidly upregulated UFGT gene expression and improved color of grape berries. Vitis 47(1):11–14

    CAS  Google Scholar 

  • Pereira LS, Cordery I, Iacovides I (2012) Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agric Water Manag 108:39–51. doi:10.1016/j.agwat.2011.08.022

    Article  Google Scholar 

  • Proffitt T, Clause JC (2011) Irrigation management for table grapes in a drying environment. http://www.perthregionnrm.com/media/10646/tablegrape_management_casestudy_30.01.11_web.pdf

  • Rana G, Katerji N, Introna M, Hammami A (2004) Microclimate and plant water relationship of the “overhead” table grape vineyard managed with three different covering techniques. Sci Hortic (Amsterdam) 102:105–120. doi:10.1016/j.scienta.2003.12.008

    Article  Google Scholar 

  • Reynolds AG, Vanden-Heuvel JE (2009) Influence of grapevine training systems on vine growth and fruit composition: a review. Am J Enol Vitic 60(3):251–268

    Google Scholar 

  • Ritschel PS, Girardi CL, Zanus MC et al (2015) Novel Brazilian grape cultivars. Acta Hortic 1082:157–163. doi:10.17660/ActaHortic.2015.1082.21

    Article  Google Scholar 

  • Roberto SR, Colombo LA, de Assis AM (2011) Review: protect cultivation in viticulture. Cienc Tec Vitivinic 26:11–16

    Google Scholar 

  • Roby G, Matthews MA (2004) Relative proportions of seed, skin and flesh, in ripe berries from Cabernet Sauvignon grapevines grown in a vineyard either well irrigated or under water deficit. Aust J Grape Wine Res 10:74–82. doi:10.1111/j.1755-0238.2004.tb00009.x

    Article  Google Scholar 

  • Rodríguez JC, Grageda J, Watts CJ et al (2010) Water use by perennial crops in the lower Sonora watershed. J Arid Environ 74:603–610. doi:10.1016/j.jaridenv.2009.11.008

    Article  Google Scholar 

  • Rustioni L, Rocchi L, Guffanti E et al (2014) Characterization of grape (Vitis vinifera L.) Berry sunburn symptoms by reflectance. J Agric Food Chem 62:3043–3046. doi:10.1021/jf405772f

    Article  CAS  Google Scholar 

  • Santesteban LG, Miranda C, Royo JB (2009) Effect of water deficit and rewatering on leaf gas exchange and transpiration decline of excised leaves of four grapevine (Vitis vinifera L.) cultivars. Sci Hortic 121(4):434–439

    Article  Google Scholar 

  • Santos TP, Lopes CMA, Rodrigues ML et al (2005) Effects of partial root-zone drying irrigation on cluster microclimate and fruit composition of field-grown Castelão grapevines. Vitis 44:117–125

    Google Scholar 

  • Satisha J, Prakash G (2006) The influence of water and gas exchange parameters on grafted grapevines under conditions of moisture stress. S Afr J Enol Vitic 27(1):40–45

    Google Scholar 

  • Satisha J, Prakash G, Venugopalan R (2006) Statistical modeling of the effect of physio-biochemical parameters on water use efficiency of grape varieties, rootstocks and their stionic combinations. Turk J Agric For 30:261–271

    CAS  Google Scholar 

  • Satisha J, Ramteke SD, Karibasappa GS (2007) Physiological and biochemical characterisation of grape rootstocks. S Afr J Enol Vitic 28(2):163–168

    CAS  Google Scholar 

  • Scheierling SM, Bartone CR, Mara DD, Drechsel P (2011) Towards an agenda for improving wastewater use in agriculture. Water Int 36:420–440. doi:10.1080/02508060.2011.594527

    Article  Google Scholar 

  • Seccia A, Santeramo FG, Nardone G (2015) Trade competitiveness in table grapes: a global view. Outlook Agric 44:127–134. doi:10.5367/oa.2015.0205

    Article  Google Scholar 

  • Serman FV, Liotta M, Parera C (2004) Effects of irrigation deficit on table grape cv. Superior Seedless production. Acta Hortic 646:183–186. doi:10.17660/ActaHortic.2004.646.23

    Article  Google Scholar 

  • Serra I, Strever A, Myburgh PA, Deloire A (2014) Review: the interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Aust J Grape Wine Res 20:1–14. doi:10.1111/ajgw.12054

    Article  Google Scholar 

  • Shellie K (2011) Interactive effects of deficit irrigation and berry exposure aspect on Merlot and Cabernet Sauvignon in an arid climate. Am J Enol Vitic 62:462–470. doi:10.5344/ajev.2011.10103

    Article  CAS  Google Scholar 

  • Shinomiya R, Fujishima H, Muramoto K, Shiraishi M (2015) Impact of temperature and sunlight on the skin coloration of the “Kyoho” table grape. Sci Hortic (Amsterdam) 193:77–83. doi:10.1016/j.scienta.2015.06.042

    Article  Google Scholar 

  • Sica C, Loisi R V., Blanco I et al (2015) SWOT analysis and land management of plastic wastes in agriculture. In: Proceedings of the 43rd international symposium on agricultural engineering, actual tasks on agricultural engineering, Opatija, 24–27 February 2015. University of Zagreb, pp 745–754

  • Silva-Contreras C, Sellés-Von Schouwen G, Ferreyra-Espada R, Silva-Robledo H (2012) Variation of water potential and trunk diameter answer as sensitivity to the water availability in table grapes. Chil J Agric Res 72:459–469. doi:10.4067/S0718-58392012000400001

    Article  Google Scholar 

  • Soar CJ, Dry PR, Loveys BR (2006) Scion photosynthesis and leaf gas exchange in Vitis vinifera L. cv. Shiraz: mediation of rootstock effects via xylem sap ABA. Aust J Grape Wine Res 12:82–96. doi:10.1111/j.1755-0238.2006.tb00047.x

    Article  CAS  Google Scholar 

  • Soto-García M, Martínez-Alvarez V, García-Bastida P et al (2013) Effect of water scarcity and modernisation on the performance of irrigation districts in south-eastern Spain. Agric Water Manag 124:11–19

    Article  Google Scholar 

  • Stanghellini C (2014) Horticultural production in greenhouses: efficient use of water. Acta Hortic 1034:25–32. doi:10.17660/ActaHortic.2014.1034.1

    Article  Google Scholar 

  • Stoll M, Loveys B, Dry P (2000) Hormonal changes induced by partial rootzone drying of irrigated grapevine. J Exp Bot 51:1627–1634. doi:10.1093/jexbot/51.350.1627

    Article  CAS  PubMed  Google Scholar 

  • Strik BC (2011) Growing table grapes. Oregon State University, Extension Service, pp 1–32. http://smallfarms.oregonstate.edu/sites/default/files/publications/growing_table_grapes_ec1639_may_2011.pdf

  • Suvočarev K, Blanco O, Faci JM et al (2013) Transpiration of table grape (Vitis vinifera L.) trained on an overhead trellis system under netting. Irrig Sci 31:1289–1302. doi:10.1007/s00271-013-0404-2

    Article  Google Scholar 

  • Swinburn G (2014) Making decisions in table grape production with benchmarking data. In: Proceedings of the 7th international table grape symposium, pp 162–164. http://www.7itgs2014.org/wp-content/uploads/2014/12/ATGA-Symposium-FINAL-WEB-Version.pdf

  • Tarricone L, Gentilesco G, Ciccarese A et al (2012) Irrigation strategy affects quantitative and qualitative vine performance of ‘Italia’ table grape. Acta Hortic 931:203–209. doi:10.17660/ActaHortic.2012.931.22

    Article  Google Scholar 

  • Tarricone L, Gentilesco G, Di Gennaro D, Amendolagine AM (2014) Irrigation strategy and vine performance of organic “Italia” table grape grown in Apulia region (Southern Italy). In: Proceedings of the 7th international table grape symposium, Australia, pp 97–100

  • Teixeira ADC, Bastiaanssen WGM, Bassoi LH (2007) Crop water parameters of irrigated wine and table grapes to support water productivity analysis in the Sao Francisco river basin, Brazil. Agric Water Manag 94(1):31–42

    Article  Google Scholar 

  • Teixeira AH, Bastiaanssen W, Ahmad MD, Bos MG (2009) Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle São Francisco River basin, Brazil. Part B: application to the regional scale. Agric For Meteorol 149:477–490. doi:10.1016/j.agrformet.2008.09.014

    Article  Google Scholar 

  • Teixeira AHdC, Lopes HL, Hernandez FBT (2014) Up scaling table grape water requirements in the Low-Middle São Francisco river basin, Brazil. Acta Hortic 1038:655–662

    Article  Google Scholar 

  • Tomás M, Medrano H, Pou A et al (2012) Water-use efficiency in grapevine cultivars grown under controlled conditions: effects of water stress at the leaf and whole-plant level. Aust J Grape Wine Res 18:164–172

    Article  CAS  Google Scholar 

  • Tomás M, Medrano H, Escalona JM et al (2014) Variability of water use efficiency in grapevines. Environ Exp Bot 103:148–157. doi:10.1016/j.envexpbot.2013.09.003

    Article  Google Scholar 

  • Tramontini AS, Vitali M, Centioni L, Schubert A, Lovisolo C (2013) Rootstock control of scion response to water stress in grapevine. Environ Exp Bot 93:20–26

    Article  Google Scholar 

  • USDA-FAS (2014a) EU-28 Fresh Deciduous Fruit Annual, Ample Domestic Supply and Russian Import Ban to Put Pressure on the Fresh Fruit Market. http://gain.fas.usda.gov/Recent%20GAIN%20Publications/Fresh%20Deciduous%20Fruit%20Annual_Vienna_EU-28_10-28-2014.pdf

  • USDA-FAS (2014b) Report. Fresh Deciduous Fruit Annual. http://gain.fas.usda.gov/Recent%20GAIN%20Publications/Fresh%20Deciduous%20Fruit%20Annual%202014_Rome_Italy_10-28-2014.pdf

  • USDA-FAS (2014c) Report. Fresh Deciduous Fruit Annual. http://gain.fas.usda.gov/Recent%20GAIN%20Publications/Fresh%20Deciduous%20Fruit%20Annual_Beijing_China%20-%20Peoples%20Republic%20of_12-29-2014.pdf

  • USDA-FAS (2014d) Report. Fresh Deciduous Fruit Annual. http://gain.fas.usda.gov/Recent%20GAIN%20Publications/Fresh%20Deciduous%20Fruit%20Annual_Ankara_Turkey_11-13-2014.pdf

  • USDA-FAS (2014e) Report. Fresh Deciduous Fruit Annual. http://gain.fas.usda.gov/Recent%20GAIN%20Publications/Fresh%20Deciduous%20Fruit%20Annual_Lima_Peru_10-9-2014.pdf

  • USDA-FAS (2015a) Fresh Deciduous Fruit: world markets and trade (apples, grapes, & pears). http://apps.fas.usda.gov/psdonline/circulars/fruit.pdf. Dec 2015

  • USDA-FAS (2015b) Noncitrus fruits and nuts 2014 summary. http://usda.mannlib.cornell.edu/usda/current/NoncFruiNu/NoncFruiNu-07-17-2015.pdf

  • USDA-FAS (2015c) Report. Fresh Deciduous Fruit Annual. http://gain.fas.usda.gov/Recent%20GAIN%20Publications/Fresh%20Deciduous%20Fruit%20Semi-annual_Santiago_Chile_5-12-2015.pdf

  • USDA-FAS (2015d) Report. Fresh Deciduous Fruit Annual. http://gain.fas.usda.gov/Recent%20GAIN%20Publications/Fresh%20Deciduous%20Fruit%20Semi-annual_Pretoria_South%20Africa%20-%20Republic%20of_5-15-2015.pdf

  • Vanino S, Pulighe G, Nino P et al (2015) Estimation of evapotranspiration and crop coefficients of tendone vineyards using multi-sensor remote sensing data in a mediterranean environment. Remote Sens 7:14708–14730. doi:10.3390/rs71114708

    Article  Google Scholar 

  • Van Zyl T (2007) The effect of partial rootzone drying and foliar nutrition on water use efficiency and quality of table grape cultivars Crimson seedless and Dauphine. Dissertation, Stellenbosch University

  • Vicente-Serrano SM, Lopez-Moreno JI, Beguería S et al (2014) Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ Res Lett 9:044001. doi:10.1088/1748-9326/9/4/044001

    Article  Google Scholar 

  • Villagra P, de García CV, Ferreyra R et al (2014) Estimation of water requirements and Kc values of ‘Thompson Seedless’ table grapes grown in the overhead trellis system, using the eddy covariance method. Chil J Agric Res 74:213–218. doi:10.4067/S0718-58392014000200013

    Article  Google Scholar 

  • Vogel S (2009) Leaves in the lowest and highest winds: temperature, force and shape. New Phytol 183:13–26. doi:10.1111/j.1469-8137.2009.02854.x

    Article  PubMed  Google Scholar 

  • Vox G, Schettini E, Scarascia-Mugnozza G et al (2014) Crimson seedless table grape grown under plastic film: ecophysiological parameters and grape characteristics as affected by the irrigation volume. In: Proceedings of the international conference of agricultural engineering, Zurich, 8 p

  • Weber E, Grattan S, Hanson B et al (2014) Recycled water causes no salinity or toxicity issues in Napa vineyards. Calif Agric 68:59–67

    Article  Google Scholar 

  • Whitfield D, Abuzar M, McAllister A et al (2014) Satellite-based assessments of irrigation water use by table grapes grown in the Robinvale district of SE Australia. In: 7th international table grape symposium, Australia, pp 106–108

  • Williams L (2012) Potential vineyard evapotranspiration (ET) due to global warming: comparison of vineyard ET at three locations in California differing in mean seasonal temperatures. Acta Hortic 931:221–226. doi:10.17660/ActaHortic.2012.931.24

    Google Scholar 

  • Williams LE, Ayars JE (2005) Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy. Agric For Meteorol 13:201–211

    Article  Google Scholar 

  • Williams LE, Grimes DW, Phene CJ (2010) The effects of applied water at various fractions of measured evapotranspiration on reproductive growth and water productivity of Thompson Seedless grapevines. Irrig Sci 28:233–243. doi:10.1007/s00271-009-0173-0

    Article  Google Scholar 

  • Wine Institute (2014) World vineyard acreage by country 2014. http://www.wineinstitute.org/files/World_Vineyard_Acreage_by_Country_2014_cTradeDataAndAnalysis.pdf

  • Zarrouk O, Costa JM, Francisco R et al (2016) Drought and water management in Mediterranean vineyards. In: Gerós H, Chaves M, Medrano H, Delrot S (eds) Grapevine in a changing environment: a molecular and ecophysiological perspective. Wiley-Blackwell, Hoboken, pp 38–67

    Chapter  Google Scholar 

  • Zhang J, Schurr U, Davies WJ (1987) Control of stomatal behaviour by abscisic acid which apparently originates in the roots. J Exp Bot 38:1174–1181. doi:10.1093/jxb/38.7.1174

    Article  CAS  Google Scholar 

  • Zhang X, Walker RR, Stevens RM, Prior LD (2002) Yield–salinity relationships of different grapevine (Vitis vinifera L.) scion–rootstock combinations. Aust J Grape Wine Res 8:150–156. doi:10.1111/j.1755-0238.2002.tb00250.x

    Article  Google Scholar 

  • Zhang Q, Wang S, Inoue M (2012) A new methodology for determining irrigation schedule of grapevines using photogrammetric measurement of berry diameter. J Food Agric Environ 10:582–587

    Google Scholar 

  • Zimmermann U (2013) The future of water relations of plants. Theor Exp Plant Physiol 25:241–243. doi:10.1590/S2197-00252013005000005

    Article  Google Scholar 

  • Zúñiga-Espinoza C, Aspillaga C, Ferreyra R, Selles G (2015) Response of table grape to irrigation water in the Aconcagua Valley, Chile. Agronomy 5:405–417. doi:10.3390/agronomy5030405

    Article  Google Scholar 

Download references

Acknowledgments

Miquéias Permanhani received support from CAPES Foundation – Proc. BEX 3665/15-1, Ministry of Education of Brazil, Brasília-DF, Brazil. JM Costa had a scholarship funded by Fundação para a Ciência e Tecnologia (ref. SFRH/BPD/93334/2013), Portugal. We thank as well the support from the Research unit GREEN-it “Bioresources for Sustainability” (UID/Multi/04551/2013) and the funding from European Community’s Seventh Framework Programme (FP7/2007–2013) under the grant agreement nº FP7-311775, Project INNOVINE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Miguel Costa.

Additional information

M. Permanhani and J. Miguel Costa contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Permanhani, M., Costa, J.M., Conceição, M.A.F. et al. Deficit irrigation in table grape: eco-physiological basis and potential use to save water and improve quality. Theor. Exp. Plant Physiol. 28, 85–108 (2016). https://doi.org/10.1007/s40626-016-0063-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-016-0063-9

Keywords

Navigation