Skip to main content

Advertisement

Log in

Glycemic variability leads to higher levels of auto-oxidized oxysterol species in patients with type 1 diabetes mellitus

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Hyperglycemia and glycemic variability (GV) are associated with oxidative stress in patients with diabetes mellitus (DM). Oxysterol species, produced by the non-enzymatic oxidation of cholesterol, are potential biomarkers of oxidative stress. This study examined the relationship between auto-oxidized oxysterols and GV in patients with type 1 DM.

Methods

Thirty patients with type 1 DM using a continuous subcutaneous insulin infusion pump therapy and a healthy control group (n = 30) were included in this prospective study. A Continuous Glucose Monitoring System device was applied for 72 h. Blood samples were taken for oxysterols produced by non-enzymatic oxidation [7-ketocholesterol (7-KC) and cholestane-3β, 5α, 6β-triol (Chol-Triol)] levels at 72 h. Short-term glycemic variability parameters, mean amplitude of glycemic excursions (MAGE), the standard deviation of glucose measurements (Glucose-SD), and mean of daily differences (MODD) were calculated with continuous glucose monitoring data. HbA1c was used to evaluate glycemic control and HbA1c-SD (the SD of HbA1c over the past year) for long-term glycemic variability.

Results

7-KC and Chol-triol levels were significantly higher in the study group than in the control group. Strong positive correlations were found between 7-KC with MAGE(24–48 h) and Glucose-SD(24–48 h). 7-KC was positively correlated with MAGE(0–72 h) and Glucose-SD(0–72 h). No significant correlation was found between HbA1c and HbA1c -SD with oxysterol levels. The regression models showed that SD(24–48 h) and MAGE(24–48 h) predicted 7-KC levels while HbA1c did not.

Conclusions

Glycemic variability leads to higher levels of auto-oxidized oxysterol species in patients with type 1 DM independent of long-term glycemic control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The data are available on request from the authors.

References

  1. Nathan DM, Turgeon H, Regan S (2007) Relationship between glycated haemoglobin levels and mean glucose levels over time. Diabetologia 50(11):2239–2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. (1994) Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: Diabetes Control and Complications Trial Diabetes Control and Complications Trial Research Group. J Pediatr. 125(2):177–88.

  3. (1995) The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes 44(8):968–83.

  4. Lachin JM, Genuth S, Nathan DM, Zinman B, Rutledge BN (2008) Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial–revisited. Diabetes 57(4):995–1001

    Article  CAS  PubMed  Google Scholar 

  5. (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 352(9131):837–53.

  6. Gorst C, Kwok CS, Aslam S, Buchan I, Kontopantelis E, Myint PK et al (2015) Long-term glycemic variability and risk of adverse outcomes: a systematic review and meta-analysis. Diabetes Care 38(12):2354–2369

    Article  CAS  PubMed  Google Scholar 

  7. Hirakawa Y, Arima H, Zoungas S, Ninomiya T, Cooper M, Hamet P et al (2014) Impact of visit-to-visit glycemic variability on the risks of macrovascular and microvascular events and all-cause mortality in type 2 diabetes: the ADVANCE trial. Diabetes Care 37(8):2359–2365

    Article  CAS  PubMed  Google Scholar 

  8. Akaza M, Akaza I, Kanouchi T, Sasano T, Sumi Y, Yokota T (2018) Nerve conduction study of the association between glycemic variability and diabetes neuropathy. Diabetol Metab Syndr 10:69

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vaya J, Szuchman A, Tavori H, Aluf Y (2011) Oxysterols formation as a reflection of biochemical pathways: summary of in vitro and in vivo studies. Chem Phys Lipids 164(6):438–442

    Article  CAS  PubMed  Google Scholar 

  10. Samadi A, Sabuncuoglu S, Samadi M, Isikhan SY, Chirumbolo S, Peana M et al (2021) A comprehensive review on oxysterols and related diseases. Curr Med Chem 28(1):110–136

    Article  CAS  PubMed  Google Scholar 

  11. Zarrouk A, Vejux A, Mackrill J, O’Callaghan Y, Hammami M, O’Brien N et al (2014) Involvement of oxysterols in age-related diseases and ageing processes. Ageing Res Rev 18:148–162

    Article  CAS  PubMed  Google Scholar 

  12. Iuliano L (2011) Pathways of cholesterol oxidation via non-enzymatic mechanisms. Chem Phys Lipids 164(6):457–468

    Article  CAS  PubMed  Google Scholar 

  13. Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP et al (2006) Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295(14):1681–1687

    Article  CAS  PubMed  Google Scholar 

  14. Ceriello A, Esposito K, Piconi L, Ihnat M, Thorpe J, Testa R et al (2008) Glucose “peak” and glucose “spike”: Impact on endothelial function and oxidative stress. Diabetes Res Clin Pract 82(2):262–267

    Article  CAS  PubMed  Google Scholar 

  15. Schisano B, Tripathi G, McGee K, McTernan PG, Ceriello A (2011) Glucose oscillations, more than constant high glucose, induce p53 activation and a metabolic memory in human endothelial cells. Diabetologia 54(5):1219–1226

    Article  CAS  PubMed  Google Scholar 

  16. Costantino S, Paneni F, Battista R, Castello L, Capretti G, Chiandotto S et al (2017) Impact of glycemic variability on chromatin remodeling, oxidative stress, and endothelial dysfunction in patients with type 2 diabetes and with target HbA(1c) levels. Diabetes 66(9):2472–2482

    Article  CAS  PubMed  Google Scholar 

  17. Samadi A, Gurlek A, Sendur SN, Karahan S, Akbiyik F, Lay I (2019) Oxysterol species: reliable markers of oxidative stress in diabetes mellitus. J Endocrinol Invest 42(1):7–17

    Article  CAS  PubMed  Google Scholar 

  18. Ferderbar S, Pereira EC, Apolinário E, Bertolami MC, Faludi A, Monte O et al (2007) Cholesterol oxides as biomarkers of oxidative stress in type 1 and type 2 diabetes mellitus. Diabetes Metab Res Rev 23(1):35–42

    Article  CAS  PubMed  Google Scholar 

  19. Service FJ, Molnar GD, Rosevear JW, Ackerman E, Gatewood LC, Taylor WF (1970) Mean amplitude of glycemic excursions, a measure of diabetic instability. Diabetes 19(9):644–655

    Article  PubMed  Google Scholar 

  20. Molnar GD, Taylor WF, Ho MM (1972) Day-to-day variation of continuously monitored glycaemia: a further measure of diabetic instability. Diabetologia 8(5):342–348

    Article  CAS  PubMed  Google Scholar 

  21. Ceriello A, Esposito K, Piconi L, Ihnat MA, Thorpe JE, Testa R et al (2008) Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 57(5):1349–1354

    Article  CAS  PubMed  Google Scholar 

  22. Chang CM, Hsieh CJ, Huang JC, Huang IC (2012) Acute and chronic fluctuations in blood glucose levels can increase oxidative stress in type 2 diabetes mellitus. Acta Diabetol 49(Suppl 1):S171–S177

    Article  PubMed  Google Scholar 

  23. Brown AJ, Jessup W (1999) Oxysterols and atherosclerosis. Atherosclerosis 142(1):1–28

    Article  CAS  PubMed  Google Scholar 

  24. Björkhem I, Andersson O, Diczfalusy U, Sevastik B, Xiu RJ, Duan C et al (1994) Atherosclerosis and sterol 27-hydroxylase: evidence for a role of this enzyme in elimination of cholesterol from human macrophages. Proc Natl Acad Sci U S A 91(18):8592–8596

    Article  PubMed  PubMed Central  Google Scholar 

  25. Salonen JT, Nyyssönen K, Salonen R, Porkkala-Sarataho E, Tuomainen TP, Diczfalusy U et al (1997) Lipoprotein oxidation and progression of carotid atherosclerosis. Circulation 95(4):840–845

    Article  CAS  PubMed  Google Scholar 

  26. Berthier A, Lemaire-Ewing S, Prunet C, Montange T, Vejux A, Pais de Barros JP et al (2005) 7-Ketocholesterol-induced apoptosis. Involvement of several pro-apoptotic but also anti-apoptotic calcium-dependent transduction pathways. FEBS J 272(12):3093–3104

    Article  CAS  PubMed  Google Scholar 

  27. Abo K, Mio T, Sumino K (2000) Comparative analysis of plasma and erythrocyte 7-ketocholesterol as a marker for oxidative stress in patients with diabetes mellitus. Clin Biochem 33(7):541–547

    Article  CAS  PubMed  Google Scholar 

  28. Samadi A, Isikhan SY, Tinkov AA, Lay I, Doşa MD, Skalny AV et al (2020) Zinc, copper, and oxysterol levels in patients with type 1 and type 2 diabetes mellitus. Clin Nutr 39(6):1849–1856

    Article  CAS  PubMed  Google Scholar 

  29. Beck RW, Connor CG, Mullen DM, Wesley DM, Bergenstal RM (2017) The fallacy of average: how using HbA(1c) alone to assess glycemic control can be misleading. Diabetes Care 40(8):994–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Danne T, Nimri R, Battelino T, Bergenstal RM, Close KL, DeVries JH et al (2017) International consensus on use of continuous glucose monitoring. Diabetes Care 40(12):1631–1640

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jones SC, Saunders HJ, Qi W, Pollock CA (1999) Intermittent high glucose enhances cell growth and collagen synthesis in cultured human tubulointerstitial cells. Diabetologia 42(9):1113–1119

    Article  CAS  PubMed  Google Scholar 

  32. Ceriello A, Novials A, Ortega E, La Sala L, Pujadas G, Testa R et al (2012) Evidence that hyperglycemia after recovery from hypoglycemia worsens endothelial function and increases oxidative stress and inflammation in healthy control subjects and subjects with type 1 diabetes. Diabetes 61(11):2993–2997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ighodaro OM (2018) Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed Pharmacother 108:656–662

    Article  CAS  PubMed  Google Scholar 

  34. Weber C, Schnell O (2009) The assessment of glycemic variability and its impact on diabetes-related complications: an overview. Diabetes Technol Ther 11(10):623–633

    Article  CAS  PubMed  Google Scholar 

  35. Valente T, Valente F, Lucchesi MBB, Punaro GR, Mouro MG, Gabbay MAL et al (2021) Relationship between short and long-term glycemic variability and oxidative stress in type 1 diabetes mellitus under daily life insulin treatment. Arch Endocrinol Metab 65(5):570–578

    PubMed  PubMed Central  Google Scholar 

  36. Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury: part I: basic mechanisms and in vivo monitoring of ROS. Circulation 108(16):1912–1916

    Article  PubMed  Google Scholar 

  37. Iborra RT, Machado-Lima A, Castilho G, Nunes VS, Abdalla DS, Nakandakare ER et al (2011) Advanced glycation in macrophages induces intracellular accumulation of 7-ketocholesterol and total sterols by decreasing the expression of ABCA-1 and ABCG-1. Lipids Health Dis 10:172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Diczfalusy U, Kanebratt KP, Bredberg E, Andersson TB, Böttiger Y, Bertilsson L (2009) 4beta-hydroxycholesterol as an endogenous marker for CYP3A4/5 activity. Stability and half-life of elimination after induction with rifampicin. Br J Clin Pharmacol 67(1):38–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bodin K, Andersson U, Rystedt E, Ellis E, Norlin M, Pikuleva I et al (2002) Metabolism of 4 beta -hydroxycholesterol in humans. J Biol Chem 277(35):31534–31540

    Article  CAS  PubMed  Google Scholar 

  40. Björkhem I, Lütjohann D, Diczfalusy U, Ståhle L, Ahlborg G, Wahren J (1998) Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res 39(8):1594–1600

    Article  PubMed  Google Scholar 

  41. Larsson H, Böttiger Y, Iuliano L, Diczfalusy U (2007) In vivo interconversion of 7β-hydroxycholesterol and 7-ketocholesterol, potential surrogate markers for oxidative stress. Free Radical Biol Med 43(5):695–701

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

UÜ and ABB: conception and design of the work, analysis, and interpretation of data, drafting the manuscript. AS and İL: performing biochemical analyses in the laboratory and revising the manuscript. MB and SD: conception and design of the work, analysis and interpretation of data, and revising the manuscript.

Corresponding author

Correspondence to U. Ünlütürk.

Ethics declarations

Conflict of interest

None of the authors have any potential conflicts of interest associated with this research.

Ethical approval

This research involves human participants. Ethical approval has been obtained from the ethical committee of Hacettepe University (Project number: 16969557-271).

Informed consent

Written informed consent was obtained from all the patients before inclusion.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ünlütürk, U., Bahçecioğlu, A.B., Samadi, A. et al. Glycemic variability leads to higher levels of auto-oxidized oxysterol species in patients with type 1 diabetes mellitus. J Endocrinol Invest 46, 2547–2554 (2023). https://doi.org/10.1007/s40618-023-02110-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-023-02110-7

Keywords

Navigation