Skip to main content

Advertisement

Log in

Association between insulin-like growth factor-1 and cardiovascular events: a systematic review and doseresponse meta-analysis of cohort studies

  • Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

Insulin-like growth factor-1 (IGF-1) has increasingly been reported as linked to cardiovascular (CV) events; however, reported results have been inconsistent, and no meta-analysis has been undertaken to quantitatively assess this association.

Methods

We searched PubMed, Embase, and Web of Science databases for cohort articles published up to December 1, 2020. Fixed or random-effects models were used to estimate the summary relative risks (RRs) and 95% confidence intervals (CIs) of CV events in relation to IGF-1. Restricted cubic splines were used to model the dose–response association.

Results

We identified 11 articles (thirteen cohort studies) covering a total of 22,995 participants and 3040 CV events in this meta-analysis. The risk of overall CV events reduced by 16% from the highest to the lowest IGF-1 levels (RR 0.83, 95% CI 0.72–0.95), while the occurrence of CV events reduced by 28% (RR 0.72, 95% CI 0.56–0.92), but not for CV deaths, however (RR 1.00, 95% CI 0.65–1.55). We also found linear associations between IGF-1 levels and CV events. With each per 45 μg/mL IGF-1 increase, the pooled RRs were 0.91 (95% CI 0.86–0.96), 0.91 (95% CI 0.85–0.97) and 0.91 (95% CI 0.84–0.98) for overall CV events, for the occurrence of CV events, and for CV deaths, respectively.

Conclusions

Our findings based on cohort studies support the contention that any increase in IGF-1 is helpful in reducing the overall risk of CV events. As an important biomarker for assessing the likelihood of CV events, IGF-1 appears to offer a promising prognostic approach for aiding prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The raw data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. World Health Organization. The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death .Accessed Dec 2020.

  2. Roth GA, Mensah GA, Johnson CO et al (2020) Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol 76(25):2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010

    Article  PubMed  PubMed Central  Google Scholar 

  3. NCD Countdown 2030 collaborators (2020). NCD Countdown 2030: pathways to achieving Sustainable Development Goal target 3.4. Lancet (London, England), 396(10255):918–934. https://doi.org/10.1016/S0140-6736(20)31761-X

  4. Rinderknecht E, Humbel RE (1978) The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem 253(8):2769–2776

    Article  CAS  PubMed  Google Scholar 

  5. Berelowitz M, Szabo M, Frohman LA, Firestone S, Chu L, Hintz RL (1981) Somatomedin-C mediates growth hormone negative feedback by effects on both the hypothalamus and the pituitary. Science 212(4500):1279–1281. https://doi.org/10.1126/science.6262917

    Article  CAS  PubMed  Google Scholar 

  6. Schutte AE, Conti E, Mels CM et al (2016) Attenuated IGF-1 predicts all-cause and cardiovascular mortality in a black population: a five-year prospective study. Eur J Prev Cardiol 23(16):1690–1699. https://doi.org/10.1177/2047487316661436

    Article  PubMed  Google Scholar 

  7. Sun J, Axelsson J, Machowska A et al (2016) Biomarkers of cardiovascular disease and mortality risk in patients with advanced CKD. Clin J Am Soc Nephrol 11(7):1163–1172. https://doi.org/10.2215/cjn.10441015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hinojosa-Amaya JM, Varlamov EV, Yedinak CG et al (2021) Echocardiographic findings in acromegaly: prevalence of concentric left ventricular remodeling in a large single-center cohort. J Endocrinol Invest 44(12):2665–2674. https://doi.org/10.1007/s40618-021-01579-4

    Article  CAS  PubMed  Google Scholar 

  9. Parolin M, Dassie F, Vettor R, Steeds RP, Maffei P (2021) Electrophysiological features in acromegaly: re-thinking the arrhythmic risk? J Endocrinol Invest 44(2):209–221. https://doi.org/10.1007/s40618-020-01343-0

    Article  CAS  PubMed  Google Scholar 

  10. Vasan RS, Sullivan LM, D’Agostino RB et al (2003) Serum insulin-like growth factor I and risk for heart failure in elderly individuals without a previous myocardial infarction: the Framingham heart study. Ann Intern Med 139(8):642–648. https://doi.org/10.7326/0003-4819-139-8-200310210-00007

    Article  CAS  PubMed  Google Scholar 

  11. Bleumink GS, Rietveld I, Janssen JA et al (2004) Insulin-like growth factor-I gene polymorphism and risk of heart failure (the Rotterdam study). Am J Cardiol 94(3):384–386. https://doi.org/10.1016/j.amjcard.2004.04.044

    Article  CAS  PubMed  Google Scholar 

  12. van Bunderen CC, van Nieuwpoort IC, van Schoor NM, Deeg DJ, Lips P, Drent ML (2010) The association of serum insulin-like growth factor-I with mortality, cardiovascular disease, and cancer in the elderly: a population-based study. J Clin Endocrinol Metab 95(10):4616–4624. https://doi.org/10.1210/jc.2010-0940

    Article  CAS  PubMed  Google Scholar 

  13. Ricketts SL, Rensing KL, Holly JM et al (2011) Prospective study of insulin-like growth factor-I, insulin-like growth factor-binding protein 3, genetic variants in the IGF1 and IGFBP3 genes and risk of coronary artery disease. Int J Mol Epidemiol Genet 2(3):261–285

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Friedrich N, Haring R, Nauck M et al (2009) Mortality and serum insulin-like growth factor (IGF)-I and IGF binding protein 3 concentrations. J Clin Endocrinol Metab 94(5):1732–1739. https://doi.org/10.1210/jc.2008-2138

    Article  CAS  PubMed  Google Scholar 

  15. Jing Z, Hou X, Wang Y et al (2015) Association between insulin-like growth factor-1 and cardiovascular disease risk: evidence from a meta-analysis. Int J Cardiol 198:1–5. https://doi.org/10.1016/j.ijcard.2015.06.114

    Article  PubMed  Google Scholar 

  16. Kaplan RC, McGinn AP, Pollak MN et al (2007) Association of total insulin-like growth factor-I, insulin-like growth factor binding protein-1 (IGFBP-1), and IGFBP-3 levels with incident coronary events and ischemic stroke. J Clin Endocrinol Metab 92(4):1319–1325. https://doi.org/10.1210/jc.2006-1631

    Article  CAS  PubMed  Google Scholar 

  17. Saber H, Himali JJ, Beiser AS et al (2017) Serum insulin-like growth factor 1 and the risk of ischemic stroke: the Framingham study. Stroke 48(7):1760–1765. https://doi.org/10.1161/strokeaha.116.016563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaplan RC, Strizich G, Aneke-Nash C et al (2017) Insulinlike growth factor binding protein-1 and ghrelin predict health outcomes among older adults: cardiovascular health study cohort. J Clin Endocrinol Metab 102(1):267–278. https://doi.org/10.1210/jc.2016-2779

    Article  PubMed  Google Scholar 

  19. Ruidavets JB, Luc G, Machez E et al (2011) Effects of insulin-like growth factor 1 in preventing acute coronary syndromes: the PRIME study. Atherosclerosis 218(2):464–469

    Article  CAS  PubMed  Google Scholar 

  20. Juul A, Scheike T, Davidsen M, Gyllenborg J, Jørgensen T (2002) Low serum insulin-like growth factor I is associated with increased risk of ischemic heart disease: a population-based case-control study. Circulation 106(8):939–944. https://doi.org/10.1161/01.cir.0000027563.44593.cc

    Article  CAS  PubMed  Google Scholar 

  21. Saydah S, Graubard B, Ballard-Barbash R, Berrigan D (2007) Insulin-like growth factors and subsequent risk of mortality in the United States. Am J Epidemiol 166(5):518–526. https://doi.org/10.1093/aje/kwm124

    Article  PubMed  Google Scholar 

  22. Schneider HJ, Wallaschofski H, Völzke H et al (2012) Incremental effects of endocrine and metabolic biomarkers and abdominal obesity on cardiovascular mortality prediction. PLoS ONE 7(3):e33084. https://doi.org/10.1371/journal.pone.0033084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Laughlin GA, Barrett-Connor E, Criqui MH, Kritz-Silverstein D (2004) The prospective association of serum insulin-like growth factor I (IGF-I) and IGF-binding protein-1 levels with all cause and cardiovascular disease mortality in older adults: the Rancho Bernardo study. J Clin Endocrinol Metab 89(1):114–120. https://doi.org/10.1210/jc.2003-030967

    Article  CAS  PubMed  Google Scholar 

  24. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605. https://doi.org/10.1007/s10654-010-9491-z

    Article  PubMed  Google Scholar 

  26. Ohlsson C, Mohan S, Sjogren K et al (2009) The role of liver-derived insulin-like growth factor-I. Endocr Rev 30(5):494–535. https://doi.org/10.1210/er.2009-0010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D (2012) Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol 175(1):66–73. https://doi.org/10.1093/aje/kwr265

    Article  PubMed  Google Scholar 

  28. Saber H, Himali JJ, Beiser A, et al. High serum insulin-like growth factor 1 is associated with lower risk of ischemic stroke: The framingham heart study. Stroke Conference: American Heart Association/American Stroke Association. 2015;46(1).

  29. Hamling J, Lee P, Weitkunat R, Ambühl M (2008) Facilitating meta-analyses by deriving relative effect and precision estimates for alternative comparisons from a set of estimates presented by exposure level or disease category. Stat Med 27(7):954–970. https://doi.org/10.1002/sim.3013

    Article  PubMed  Google Scholar 

  30. Bekkering GE, Harris RJ, Thomas S et al (2008) How much of the data published in observational studies of the association between diet and prostate or bladder cancer is usable for meta-analysis? Am J Epidemiol 167(9):1017–1026. https://doi.org/10.1093/aje/kwn005

    Article  PubMed  Google Scholar 

  31. Greenland S (1995) Dose-response and trend analysis in epidemiology: alternatives to categorical analysis. Epidemiology 6(4):356–365. https://doi.org/10.1097/00001648-199507000-00005

    Article  CAS  PubMed  Google Scholar 

  32. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu X, Zhang D, Liu Y et al (2017) Dose-response association between physical activity and incident hypertension: a systematic review and meta-analysis of cohort studies. Hypertension 69(5):813–820. https://doi.org/10.1161/hypertensionaha.116.08994 (Dallas, Tex : 1979)

    Article  CAS  PubMed  Google Scholar 

  34. Cai Z, Fan X (2020) A comparison of fixed-effects and random-effects models for multivariate meta-analysis using an SEM approach. Multivariate Behav Res 55(6):839–854. https://doi.org/10.1080/00273171.2019.1689348

    Article  PubMed  Google Scholar 

  35. Allison PD. Fixed Effects Regression Models. SAGE. 2006

  36. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50(4):1088–1101

    Article  CAS  PubMed  Google Scholar 

  37. Saber H, Himali JJ, Beiser AS et al (2017) Serum insulin-like growth factor 1 and the risk of ischemic stroke. Stroke 48(7):1760–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Obradovic M, Zafirovic S, Soskic S et al (2019) Effects of IGF-1 on the cardiovascular system. Curr Pharm Des 25(35):3715–3725. https://doi.org/10.2174/1381612825666191106091507

    Article  CAS  PubMed  Google Scholar 

  39. Higashi Y, Gautam S, Delafontaine P, Sukhanov S (2019) IGF-1 and cardiovascular disease. Growth Horm IGF Res 45:6–16. https://doi.org/10.1016/j.ghir.2019.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Johnsen SP, Hundborg HH, Sørensen HT et al (2005) Insulin-like growth factor (IGF) I, -II, and IGF binding protein-3 and risk of ischemic stroke. J Clin Endocrinol Metab 90(11):5937–5941. https://doi.org/10.1210/jc.2004-2088

    Article  CAS  PubMed  Google Scholar 

  41. De Lorenzo A, Moreira AS, Souza EG, Oliveira GM (2016) Insulin-like growth factor-1 in early-onset coronary artery disease: insights into the pathophysiology of atherosclerosis. Int J Cardiol 202:1–2. https://doi.org/10.1016/j.ijcard.2015.04.032

    Article  PubMed  Google Scholar 

  42. Junnila RK, List EO, Berryman DE, Murrey JW, Kopchick JJ (2013) The GH/IGF-1 axis in ageing and longevity. Nat Rev Endocrinol 9(6):366–376. https://doi.org/10.1038/nrendo.2013.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Perkel D, Naghi J, Agarwal M et al (2012) The potential effects of IGF-1 and GH on patients with chronic heart failure. J Cardiovasc Pharmacol Ther 17(1):72–78. https://doi.org/10.1177/1074248411402078

    Article  CAS  PubMed  Google Scholar 

  44. Kaklamani VG, Linos A, Kaklamani E, Markaki I, Mantzoros C (1999) Age, sex, and smoking are predictors of circulating insulin-like growth factor 1 and insulin-like growth factor-binding protein 3. J Clin Oncol 17(3):813–817. https://doi.org/10.1200/jco.1999.17.3.813

    Article  CAS  PubMed  Google Scholar 

  45. Landin-Wilhelmsen K, Wilhelmsen L, Lappas G et al (1994) Serum insulin-like growth factor I in a random population sample of men and women: relation to age, sex, smoking habits, coffee consumption and physical activity, blood pressure and concentrations of plasma lipids, fibrinogen, parathyroid hormone and osteocalcin. Clin Endocrinol 41(3):351–357. https://doi.org/10.1111/j.1365-2265.1994.tb02556.x

    Article  CAS  Google Scholar 

  46. Foncea R, Andersson M, Ketterman A et al (1997) Insulin-like growth factor-I rapidly activates multiple signal transduction pathways in cultured rat cardiac myocytes. J Biol Chem 272(31):19115–19124. https://doi.org/10.1074/jbc.272.31.19115

    Article  CAS  PubMed  Google Scholar 

  47. Okura Y, Brink M, Zahid AA, Anwar A, Delafontaine P (2001) Decreased expression of insulin-like growth factor-1 and apoptosis of vascular smooth muscle cells in human atherosclerotic plaque. J Mol Cell Cardiol 33(10):1777–1789. https://doi.org/10.1006/jmcc.2001.1441

    Article  CAS  PubMed  Google Scholar 

  48. Patel VA, Zhang QJ, Siddle K et al (2001) Defect in insulin-like growth factor-1 survival mechanism in atherosclerotic plaque-derived vascular smooth muscle cells is mediated by reduced surface binding and signaling. Circ Res 88(9):895–902. https://doi.org/10.1161/hh0901.090305

    Article  CAS  PubMed  Google Scholar 

  49. Walsh MF, Barazi M, Pete G, Muniyappa R, Dunbar JC, Sowers JR (1996) Insulin-like growth factor I diminishes in vivo and in vitro vascular contractility: role of vascular nitric oxide. Endocrinology 137(5):1798–1803. https://doi.org/10.1210/endo.137.5.8612517

    Article  CAS  PubMed  Google Scholar 

  50. Troncoso R, Ibarra C, Vicencio JM, Jaimovich E, Lavandero S (2014) New insights into IGF-1 signaling in the heart. Trends Endocrinol Metab 25(3):128–137. https://doi.org/10.1016/j.tem.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  51. Arcopinto M, Bobbio E, Bossone E et al (2013) The GH/IGF-1 axis in chronic heart failure. Endocr Metab Immune Disord Drug Targets 13(1):76–91. https://doi.org/10.2174/1871530311313010010

    Article  CAS  PubMed  Google Scholar 

  52. Castellano G, Affuso F, Conza PD, Fazio S (2009) The GH/IGF-1 axis and heart failure. Curr Cardiol Rev 5(3):203–215. https://doi.org/10.2174/157340309788970306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chennaoui M, Léger D, Gomez-Merino D (2020) Sleep and the GH/IGF-1 axis: consequences and countermeasures of sleep loss/disorders. Sleep Med Rev 49:101223. https://doi.org/10.1016/j.smrv.2019.101223

    Article  PubMed  Google Scholar 

  54. Saccà L, Cittadini A, Fazio S (1994) Growth hormone and the heart. Endocr Rev 15(5):555–573. https://doi.org/10.1210/edrv-15-5-555

    Article  PubMed  Google Scholar 

  55. Rosén T, Bengtsson BA (1990) Premature mortality due to cardiovascular disease in hypopituitarism. Lancet 336(8710):285–288. https://doi.org/10.1016/0140-6736(90)91812-o

    Article  PubMed  Google Scholar 

  56. Gravholt CH, Viuff MH, Brun S, Stochholm K, Andersen NH (2019) Turner syndrome: mechanisms and management. Nat Rev Endocrinol 15(10):601–614. https://doi.org/10.1038/s41574-019-0224-4

    Article  PubMed  Google Scholar 

  57. Oldfield EH, Jane JA Jr, Thorner MO, Pledger CL, Sheehan JP, Vance ML (2017) Correlation between GH and IGF-1 during treatment for acromegaly. J Neurosurg 126(6):1959–1966. https://doi.org/10.3171/2016.8.Jns161123

    Article  CAS  PubMed  Google Scholar 

  58. Bruch C, Herrmann B, Schmermund A, Bartel T, Mann K, Erbel R (2002) Impact of disease activity on left ventricular performance in patients with acromegaly. Am Heart J 144(3):538–543. https://doi.org/10.1067/mhj.2002.123572

    Article  PubMed  Google Scholar 

  59. Wright AD, Hill DM, Lowy C, Fraser TR (1970) Mortality in acromegaly. Q J Med 39(153):1–16

    CAS  PubMed  Google Scholar 

  60. Friehs I, Stamm C, Cao-Danh H, McGowan FX, del Nido PJ (2001) Insulin-like growth factor-1 improves postischemic recovery in hypertrophied hearts. Ann Thorac Surg 72(5):1650–1656. https://doi.org/10.1016/s0003-4975(01)03098-3

    Article  CAS  PubMed  Google Scholar 

  61. Li B, Setoguchi M, Wang X et al (1999) Insulin-like growth factor-1 attenuates the detrimental impact of nonocclusive coronary artery constriction on the heart. Circ Res 84(9):1007–1019. https://doi.org/10.1161/01.res.84.9.1007

    Article  CAS  PubMed  Google Scholar 

  62. Anwar A (2002) Tumor necrosis factor-α regulates insulin-like growth factor-1 and insulin-like growth factor binding protein-3 expression in vascular smooth muscle. Circulation 105(10):1220–1225

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge all the authors and Prof. Dongsheng Hu for methodological advice and help to modify the meta-analysis. All authors have read and approved the submission of the manuscript.

Funding

This study was supported by the National Natural Science Foundation of China (Grant nos. 81402752 and 81673260), the Natural Science Foundation of Guangdong Province (Grant no. 2019A1515011183), the Science and Technology Development Foundation of Shenzhen (Grant no. JCYJ20190808145805515), and the SZU medical young scientists’ program (Grant no. 71201-000001). The investigators are grateful to the dedicated participants and all research staff involved in the study.

Author information

Authors and Affiliations

Authors

Contributions

TL substantially contributed to the design and drafting of the study and the analysis and interpretation of the data. TL wrote the manuscript.  YZ, XY, YF, YL, YW, MZ, XL, HH, JZ, LY, YL, XS, PQ, CC, and DH revised the manuscript.

Corresponding author

Correspondence to D. Hu.

Ethics declarations

Conflict of interest

Tianze Li, Yang Zhao, Xingjin Yang, Yifei Feng, Yang Li, Yuying Wu, Ming Zhang, Xi Li, Huifang Hu, Jinli Zhang, Lijun Yuan, Yu Liu, Xizhuo Sun, Pei Qin, Chuanqi Chen, and Dongsheng Hu declare that they have no conflicts of interest relevant to the content of this review.

Ethical approval

This study dealt with published data only, no ethical approval was needed.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1927 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Zhao, Y., Yang, X. et al. Association between insulin-like growth factor-1 and cardiovascular events: a systematic review and doseresponse meta-analysis of cohort studies. J Endocrinol Invest 45, 2221–2231 (2022). https://doi.org/10.1007/s40618-022-01819-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-022-01819-1

Keywords

Navigation