Skip to main content
Log in

Senolytics: Targeting Senescent Cells for Age-Associated Diseases

  • Molecular Biology of Cell Death and Aging (N Razdan and N Muhammad, Section Editors)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Evidence suggests that senescent cells drive aging and age-related diseases, with interventions that clear them improving various conditions in preclinical models. Efforts to discover senolytics, drugs that can specifically kill senescent cells, are ongoing, guided by studies into their biology and several in vivo models. This review describes recently discovered senolytics and the pathways they target.

Recent Findings

Drugs targeting the BCL-2 family proteins, p53 activators, HSP90 inhibitors, cardiac glycosides, and fibrates along with several flavonoids are senolytic in vitro and in vivo. Methods for specifically delivering death to senescent cells to decrease non-specific off-target effects take advantage of their characteristic elevated level of p16 and increased β-galactosidase activity.

Summary

Effects of senolytics on age-related diseases in pre-clinical models have been so striking that several proof-of-concept and safety phase I human trials have begun. The search continues for additional senolytics that can target more types of senescent cells with the least side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Miller RA. Extending life: scientific prospects and political obstacles. Milbank Q. 2002;80(1):155–74. https://doi.org/10.1111/1468-0009.00006.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sierra F. Geroscience and the challenges of aging societies. Aging Med (Milton). 2019;2(3):132–4. https://doi.org/10.1002/agm2.12082.

    Article  Google Scholar 

  3. Sierra F. The emergence of geroscience as an interdisciplinary approach to the enhancement of health span and life span. Cold Spring Harb Perspect Med. 2016;6(4):a025163. https://doi.org/10.1101/cshperspect.a025163.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kaeberlein M. Translational geroscience: a new paradigm for 21(st) century medicine. Transl Med Aging. 2017;1:1–4. https://doi.org/10.1016/j.tma.2017.09.004.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Melov S. (2016) Geroscience approaches to increase healthspan and slow aging. F1000Res. 5. doi:https://doi.org/10.12688/f1000research.7583.1.

  6. Huffman DM, Justice JN, Stout MB, Kirkland JL, Barzilai N, Austad SN. Evaluating health span in preclinical models of aging and disease: guidelines, challenges, and opportunities for geroscience. J Gerontol A Biol Sci Med Sci. 2016;71(11):1395–406. https://doi.org/10.1093/gerona/glw106.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://doi.org/10.1016/j.cell.2013.05.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Palmer AK, Gustafson B, Kirkland JL, Smith U. Cellular senescence: at the nexus between ageing and diabetes. Diabetologia. 2019;62(10):1835–41. https://doi.org/10.1007/s00125-019-4934-x.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kirkland JL. Translating the science of aging into therapeutic interventions. Cold Spring Harb Perspect Med. 2016;6(3):a025908. https://doi.org/10.1101/cshperspect.a025908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. • Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24(8):1246–56. https://doi.org/10.1038/s41591-018-0092-9This report shows a causal role for senescent cells in aging-like phenotypes in mice by transplanting senescent or proliferating cells into young and old mice and demonstrating that increased senescent cell load causes physical dysfunction, increased senescence elsewhere and reduced lifespan. Furthermore, they demonstrate that treating transplanted mice with the senolytic cocktail D+Q improves lifespan and healthspan in these mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Palmer AK, Xu M, Zhu Y, Pirtskhalava T, Weivoda MM, Hachfeld CM, et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell. 2019;18(3):e12950. https://doi.org/10.1111/acel.12950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. • Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, et al. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644–58. https://doi.org/10.1111/acel.12344This is the paper that describes the first senolytics, Dasatinib and Quercetin, and the transcriptomics analysis combined with RNA interference studies that allowed the identification of survival pathways differentially regulated in senescent vs proliferating cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016;22(1):78–83. https://doi.org/10.1038/nm.4010.

    Article  CAS  PubMed  Google Scholar 

  14. Roos CM, Zhang B, Palmer AK, Ogrodnik MB, Pirtskhalava T, Thalji NM, et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell. 2016;15(5):973–7. https://doi.org/10.1111/acel.12458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moncsek A, Al-Suraih MS, Trussoni CE, O'Hara SP, Splinter PL, Zuber C, et al. Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2(−/−) ) mice. Hepatology. 2018;67(1):247–59. https://doi.org/10.1002/hep.29464.

    Article  CAS  PubMed  Google Scholar 

  16. Ogrodnik M, Miwa S, Tchkonia T, Tiniakos D, Wilson CL, Lahat A, et al. Cellular senescence drives age-dependent hepatic steatosis. Nat Commun. 2017;8:15691. https://doi.org/10.1038/ncomms15691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yousefzadeh MJ, Zhu Y, McGowan SJ, Angelini L, Fuhrmann-Stroissnigg H, Xu M, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28. https://doi.org/10.1016/j.ebiom.2018.09.015.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016;530(7589):184–9. https://doi.org/10.1038/nature16932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. • Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479(7372):232–236. doi:https://doi.org/10.1038/nature10600. These two Baker et al papers describe the INK-ATTAC mouse model which provided the first genetic evidence supporting a causative role of senescent cells in modulation of aging and aging-related diseases. INK-ATTAC mice carry a drug-inducible caspase driven by part of the p16INK4A promoter, so that when that drug is administered, cells that highly express p16INK4A undergo apoptotic cell death. In addition to alleviation of aging-related diseases such as heart hypertrophy, cataracts, glomerulosclerosis and lipodystrophy, they were able to extend lifespan of progeroid (BubR1) and naturally aged mice.

  20. Jeon OH, Kim C, Laberge RM, Demaria M, Rathod S, Vasserot AP, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med. 2017;23(6):775–81. https://doi.org/10.1038/nm.4324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature. 2018;562(7728):578–82. https://doi.org/10.1038/s41586-018-0543-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. • Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 2014;31(6):722–33. https://doi.org/10.1016/j.devcel.2014.11.012Describes another essential genetic mouse model, the p16-3MR model, essential for establishing the causal role of p16+ve senescent cells in many processes and conditions and providing important proof of concept studies for clearing SnCs for attenuating aging-like phenotypes and conditions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yabluchanskiy A, Tarantini S, Balasubramanian P, Kiss T, Csipo T, Fulop GA, et al. Pharmacological or genetic depletion of senescent astrocytes prevents whole brain irradiation-induced impairment of neurovascular coupling responses protecting cognitive function in mice. Geroscience. 2020;42:409–28. https://doi.org/10.1007/s11357-020-00154-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Patil P, Dong Q, Wang D, Chang J, Wiley C, Demaria M, et al. Systemic clearance of p16(INK4a) -positive senescent cells mitigates age-associated intervertebral disc degeneration. Aging Cell. 2019;18(3):e12927. https://doi.org/10.1111/acel.12927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118. https://doi.org/10.1146/annurev-pathol-121808-102144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coppe JP, Rodier F, Patil CK, Freund A, Desprez PY, Campisi J. Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype. J Biol Chem. 2011;286(42):36396–403. https://doi.org/10.1074/jbc.M111.257071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. • Xu M, Bradley EW, Weivoda MM, Hwang SM, Pirtskhalava T, Decklever T, et al. Transplanted senescent cells induce an osteoarthritis-like condition in mice. J Gerontol A Biol Sci Med Sci. 2017;72(6):780–5. https://doi.org/10.1093/gerona/glw154This report establishes a causal role of senescent cells in osteoarthritis by showing that injecting senescent mouse ear fibroblasts into knee joints of healthy mice results in OA-like phenotype, whereas a non-senescent cell injection does not.

    Article  CAS  PubMed  Google Scholar 

  28. Xu M, Palmer AK, Ding H, Weivoda MM, Pirtskhalava T, White TA, et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife. 2015;4:e12997. https://doi.org/10.7554/eLife.12997.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sousa-Victor P, Gutarra S, Garcia-Prat L, Rodriguez-Ubreva J, Ortet L, Ruiz-Bonilla V, et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature. 2014;506(7488):316–21. https://doi.org/10.1038/nature13013.

    Article  CAS  PubMed  Google Scholar 

  30. von Kobbe C. (2019) Targeting senescent cells: approaches, opportunities, challenges Aging (Albany NY). 11(24):12844–61. doi:https://doi.org/10.18632/aging.102557.

  31. Wissler Gerdes EO, Zhu Y, Tchkonia T, Kirkland JL. Discovery, development, and future application of senolytics: theories and predictions. FEBS J. 2020;287:2418–27. https://doi.org/10.1111/febs.15264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van Deursen JM. Senolytic therapies for healthy longevity. Science. 2019;364(6441):636–7. https://doi.org/10.1126/science.aaw1299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. • Wang B, Liu Z, Chen VP, Wang L, Inman CL, Zhou Y, et al. Transplanting cells from old but not young donors causes physical dysfunction in older recipients. Aging Cell. 2020:e13106. https://doi.org/10.1111/acel.13106This is the first study to use single cell transcriptomics to identify a population of naturally occurring SnCs in aged mice, and showed that these cells resemble some of the key altered pathways in in vitro-generated SnCs,which have been widely used for cellular senescence study.

  34. • Hickson LJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, et al. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine. 2019;47:446–56. https://doi.org/10.1016/j.ebiom.2019.08.069This human clinical trial reports reduced senescent cell burden in adipose tissue, and decreased circulating SASP factors of patients with diabetic kidney disease (DKD) after receiving a 3 day oral course of D+Q. They report no side effects in this open-label trial which is still ongoing.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Justice JN, Ferrucci L, Newman AB, Aroda VR, Bahnson JL, Divers J, et al. A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: report from the TAME biomarkers workgroup. Geroscience. 2018;40(5–6):419–36. https://doi.org/10.1007/s11357-018-0042-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang E. Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Res. 1995;55(11):2284–92.

    CAS  PubMed  Google Scholar 

  37. Musi N, Valentine JM, Sickora KR, Baeuerle E, Thompson CS, Shen Q, et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell. 2018;17(6):e12840. https://doi.org/10.1111/acel.12840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler RG, Zhang S, et al. Senolytic therapy alleviates Abeta-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model. Nat Neurosci. 2019;22(5):719–28. https://doi.org/10.1038/s41593-019-0372-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cavalcante MB, Saccon TD, Nunes ADC, Kirkland JL, Tchkonia T, Schneider A et al. Dasatinib plus quercetin prevents uterine age-related dysfunction and fibrosis in mice. Aging (Albany NY). 2020;12(3):2711–22. doi:https://doi.org/10.18632/aging.102772.

  40. Farr JN, Xu M, Weivoda MM, Monroe DG, Fraser DG, Onken JL, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med. 2017;23(9):1072–9. https://doi.org/10.1038/nm.4385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lewis-McDougall FC, Ruchaya PJ, Domenjo-Vila E, Shin Teoh T, Prata L, Cottle BJ, et al. Aged-senescent cells contribute to impaired heart regeneration. Aging Cell. 2019;18(3):e12931. https://doi.org/10.1111/acel.12931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. •• Justice JN, Nambiar AM, Tchkonia T, NK LB, Pascual R, Hashmi SK, et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine. 2019;40:554–63. https://doi.org/10.1016/j.ebiom.2018.12.052First study of use of senolytics in human patients. 14 patients with IPF received 9 doses orally of the senolytic combination D+Q over a 3 week period in a pilot, open-label clinical trial. Reports safety and tolerability of the drug and showed improved physical function in these patients.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kritchevsky SB, Justice JN. Testing the geroscience hypothesis: early days. J Gerontol A Biol Sci Med Sci. 2020;75(1):99–101. https://doi.org/10.1093/gerona/glz267.

    Article  PubMed  Google Scholar 

  44. Mendelsohn AR, Larrick JW. Cellular senescence as the key intermediate in tau-mediated neurodegeneration. Rejuvenation Res. 2018;21(6):572–9. https://doi.org/10.1089/rej.2018.2155.

    Article  CAS  PubMed  Google Scholar 

  45. Schafer MJ, Haak AJ, Tschumperlin DJ, LeBrasseur NK. Targeting senescent cells in fibrosis: pathology, paradox, and practical considerations. Curr Rheumatol Rep. 2018;20(1):3. https://doi.org/10.1007/s11926-018-0712-x.

    Article  PubMed  Google Scholar 

  46. Schafer MJ, White TA, Iijima K, Haak AJ, Ligresti G, Atkinson EJ, et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun. 2017;8:14532. https://doi.org/10.1038/ncomms14532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhu Y, Doornebal EJ, Pirtskhalava T, Giorgadze N, Wentworth M, Fuhrmann-Stroissnigg H et al. (2017) New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging (Albany NY). 9(3):955–63. doi:https://doi.org/10.18632/aging.101202.

  48. Khan N, Syed DN, Ahmad N, Mukhtar H. Fisetin: a dietary antioxidant for health promotion. Antioxid Redox Signal. 2013;19(2):151–62. https://doi.org/10.1089/ars.2012.4901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Adhami VM, Syed DN, Khan N, Mukhtar H. Dietary flavonoid fisetin: a novel dual inhibitor of PI3K/Akt and mTOR for prostate cancer management. Biochem Pharmacol. 2012;84(10):1277–81. https://doi.org/10.1016/j.bcp.2012.07.012.

    Article  CAS  PubMed  Google Scholar 

  50. Syed DN, Adhami VM, Khan MI, Mukhtar H. Inhibition of Akt/mTOR signaling by the dietary flavonoid fisetin. Anti Cancer Agents Med Chem. 2013;13(7):995–1001. https://doi.org/10.2174/18715206113139990129.

    Article  CAS  Google Scholar 

  51. Farsad-Naeimi A, Alizadeh M, Esfahani A, Darvish AE. Effect of fisetin supplementation on inflammatory factors and matrix metalloproteinase enzymes in colorectal cancer patients. Food Funct. 2018;9(4):2025–31. https://doi.org/10.1039/c7fo01898c.

    Article  CAS  PubMed  Google Scholar 

  52. Singh S, Singh AK, Garg G, Rizvi SI. Fisetin as a caloric restriction mimetic protects rat brain against aging induced oxidative stress, apoptosis and neurodegeneration. Life Sci. 2018;193:171–9. https://doi.org/10.1016/j.lfs.2017.11.004.

    Article  CAS  PubMed  Google Scholar 

  53. Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell. 2016;15(3):428–35. https://doi.org/10.1111/acel.12445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yosef R, Pilpel N, Tokarsky-Amiel R, Biran A, Ovadya Y, Cohen S, et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun. 2016;7:11190. https://doi.org/10.1038/ncomms11190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pan J, Li D, Xu Y, Zhang J, Wang Y, Chen M, et al. Inhibition of Bcl-2/xl with ABT-263 selectively kills senescent type II pneumocytes and reverses persistent pulmonary fibrosis induced by ionizing radiation in mice. Int J Radiat Oncol Biol Phys. 2017;99(2):353–61. https://doi.org/10.1016/j.ijrobp.2017.02.216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Walaszczyk A, Dookun E, Redgrave R, Tual-Chalot S, Victorelli S, Spyridopoulos I, et al. Pharmacological clearance of senescent cells improves survival and recovery in aged mice following acute myocardial infarction. Aging Cell. 2019;18(3):e12945. https://doi.org/10.1111/acel.12945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mikawa R, Suzuki Y, Baskoro H, Kanayama K, Sugimoto K, Sato T, et al. Elimination of p19(ARF) -expressing cells protects against pulmonary emphysema in mice. Aging Cell. 2018;17(5):e12827. https://doi.org/10.1111/acel.12827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li W, He Y, Zhang R, Zheng G, Zhou D. The curcumin analog EF24 is a novel senolytic agent. Aging (Albany NY). 2019;11(2):771–82. doi:https://doi.org/10.18632/aging.101787.

  59. Wang Y, Chang J, Liu X, Zhang X, Zhang S, Zhang X et al. Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging (Albany NY). 2016;8(11):2915–26. doi:https://doi.org/10.18632/aging.101100.

  60. Levine AJ. Reviewing the future of the P53 field. Cell Death Differ. 2018;25(1):1–2. https://doi.org/10.1038/cdd.2017.181.

    Article  CAS  PubMed  Google Scholar 

  61. Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene. 2003;22(56):9030–40. https://doi.org/10.1038/sj.onc.1207116.

    Article  CAS  PubMed  Google Scholar 

  62. Speidel D. Transcription-independent p53 apoptosis: an alternative route to death. Trends Cell Biol. 2010;20(1):14–24. https://doi.org/10.1016/j.tcb.2009.10.002.

    Article  CAS  PubMed  Google Scholar 

  63. Johmura Y, Nakanishi M. Multiple facets of p53 in senescence induction and maintenance. Cancer Sci. 2016;107(11):1550–5. https://doi.org/10.1111/cas.13060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Johmura Y, Sun J, Kitagawa K, Nakanishi K, Kuno T, Naiki-Ito A, et al. SCF(Fbxo22)-KDM4A targets methylated p53 for degradation and regulates senescence. Nat Commun. 2016;7:10574. https://doi.org/10.1038/ncomms10574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Johmura Y, Yamashita E, Shimada M, Nakanishi K, Nakanishi M. Defective DNA repair increases susceptibility to senescence through extension of Chk1-mediated G2 checkpoint activation. Sci Rep. 2016;6:31194. https://doi.org/10.1038/srep31194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. • Baar MP, RMC B, Putavet DA, JDD K, KWJ D, BRM B, et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell. 2017;169(1):132–47 e16. https://doi.org/10.1016/j.cell.2017.02.031This reports the use of a peptide (FOXO4-DRI) rather than a small molecule, to block the p53-FOXO4 interaction. Once p53 is released, the senescent cell can undergo p53-dependent apoptosis. The peptide was designed as a fusion with HIV-TAT, which is a basic and hydrophilic sequence that allows its entry into cells without energy expenditure through transient pore formation. The FOXO4-DRI had senolytic activity both in vitro and in vivo in several mouse models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003;11(3):577–90. https://doi.org/10.1016/s1097-2765(03)00050-9.

    Article  CAS  PubMed  Google Scholar 

  68. Mihara M, Moll UM. Detection of mitochondrial localization of p53. Methods Mol Biol. 2003;234:203–9. https://doi.org/10.1385/1-59259-408-5:203.

    Article  CAS  PubMed  Google Scholar 

  69. Nag S, Qin J, Srivenugopal KS, Wang M, Zhang R. The MDM2-p53 pathway revisited. J Biomed Res. 2013;27(4):254–71. https://doi.org/10.7555/JBR.27.20130030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Moll UM, Petrenko O. The MDM2-p53 interaction. Mol Cancer Res. 2003;1(14):1001–8.

    CAS  PubMed  Google Scholar 

  71. He Y, Li W, Lv D, Zhang X, Zhang X, Ortiz YT, et al. Inhibition of USP7 activity selectively eliminates senescent cells in part via restoration of p53 activity. Aging Cell. 2020;19(3):e13117. https://doi.org/10.1111/acel.13117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li M, Brooks CL, Kon N, Gu W. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell. 2004;13(6):879–86. https://doi.org/10.1016/s1097-2765(04)00157-1.

    Article  CAS  PubMed  Google Scholar 

  73. • Fuhrmann-Stroissnigg H, Ling YY, Zhao J, SJ MG, Zhu Y, Brooks RW, et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun. 2017;8(1):422. https://doi.org/10.1038/s41467-017-00314-zDescribes a novel, high-throughput platform using DNA repair deficient Ercc−/− MEFs induced to senesce in high oxygen coupled with a senescence-associated β-galactosidase fluorescent substrate for identifying drugs with senotherapeutic activity using a semi-automated confocal microscopy detection system. Their screen of a library of autophagy regulators identified HSP90 inhibitors as a new class of senolytics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fuhrmann-Stroissnigg H, Niedernhofer LJ, Robbins PD. Hsp90 inhibitors as senolytic drugs to extend healthy aging. Cell Cycle. 2018;17(9):1048–55. https://doi.org/10.1080/15384101.2018.1475828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. • Nogueira-Recalde U, Lorenzo-Gomez I, Blanco FJ, Loza MI, Grassi D, Shirinsky V, et al. Fibrates as drugs with senolytic and autophagic activity for osteoarthritis therapy. EBioMedicine. 2019;45:588–605. https://doi.org/10.1016/j.ebiom.2019.06.049Report a novel two-step method for screening drugs for their senotherapeutic and autophagy modulating activity simultaneously. Their screen uses the fact that IL-6 treated human chondrocytes senesce and express senescence-associated β-galactosidase combined with the fluorescent substrate for identifying drugs with senotherapeutic activity. In a secondary screen, they test the effect of positive hits on autophagic flux using a chondrocyte cell line transfected with a fluorescent LC3 reporter. This helped them identify fibrates as a previously unknown family of senolytics with pro-autophagic activity.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Guerrero A, Herranz N, Sun B, Wagner V, Gallage S, Guiho R, et al. Cardiac glycosides are broad-spectrum senolytics. Nat Metab. 2019;1(11):1074–88. https://doi.org/10.1038/s42255-019-0122-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. • Triana-Martinez F, Picallos-Rabina P, Da Silva-Alvarez S, Pietrocola F, Llanos S, Rodilla V, et al. Identification and characterization of Cardiac Glycosides as senolytic compounds. Nat Commun. 2019;10(1):4731. https://doi.org/10.1038/s41467-019-12888-xThey report a novel high throughput technique for screening for senolytics in a human lung adenocarcinoma cell line. Cells were transfected either with a RFP reporter or GFP reporter using lentiviral transduction. Cells with the RFP reporter were then made to senesce with bleomycin while GFP reporter cells were left untreated. RFP and GFP transduced cells were mixed in a 1:3 ratio (proliferating:senescent) and used to screen for drugs that changed the GFP:RFP cell ratios.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chilosi M, Carloni A, Rossi A, Poletti V. Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. Transl Res. 2013;162(3):156–73. https://doi.org/10.1016/j.trsl.2013.06.004.

    Article  CAS  PubMed  Google Scholar 

  79. Yanai H, Shteinberg A, Porat Z, Budovsky A, Braiman A, Ziesche R et al. (2015) Cellular senescence-like features of lung fibroblasts derived from idiopathic pulmonary fibrosis patients. Aging (Albany NY). 7(9):664–72. doi:https://doi.org/10.18632/aging.100807.

  80. Kuwano K, Araya J, Hara H, Minagawa S, Takasaka N, Ito S, et al. Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Respir Investig. 2016;54(6):397–406. https://doi.org/10.1016/j.resinv.2016.03.010.

    Article  PubMed  Google Scholar 

  81. Waters DW, Blokland KEC, Pathinayake PS, Burgess JK, Mutsaers SE, Prele CM, et al. Fibroblast senescence in the pathology of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2018;315(2):L162–L72. https://doi.org/10.1152/ajplung.00037.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Munoz-Espin D, Rovira M, Galiana I, Gimenez C, Lozano-Torres B, Paez-Ribes M, et al. A versatile drug delivery system targeting senescent cells. EMBO Mol Med. 2018;10(9). https://doi.org/10.15252/emmm.201809355.

  83. Guerrero A, Guiho R, Herranz N, Uren A, Withers DJ, Martinez-Barbera JP et al. Galactose-modified duocarmycin prodrugs as senolytics. Aging Cell. 2020:e13133. doi:https://doi.org/10.1111/acel.13133.

Download references

Acknowledgments

This work was supported by Glenn Foundation for Medical Research and AFAR Grant for Junior Faculty (M.X.), and NIH grants R21AG063528 (G.A.K. and M.X.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman M. A. Al-Naggar.

Ethics declarations

Conflict of Interests

Dr. Xu has financial interest related to senolytics. Patents on senolytic drugs (including PCT/US2016/041646, filed at the US Patent Office) are held by Mayo Clinic. Dr. Kuchel has nothing to disclose. Dr. Al-Naggar has nothing to disclose.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Molecular Biology of Cell Death and Aging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Naggar, I.M.A., Kuchel, G.A. & Xu, M. Senolytics: Targeting Senescent Cells for Age-Associated Diseases. Curr Mol Bio Rep 6, 161–172 (2020). https://doi.org/10.1007/s40610-020-00140-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-020-00140-1

Keywords

Navigation