Skip to main content

Advertisement

Log in

Targeting Senescent Cells in Fibrosis: Pathology, Paradox, and Practical Considerations

  • Scleroderma (J Varga, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Senescent cells have the capacity to both effect and limit fibrosis. Senotherapeutics target senescent cells to improve aging conditions. Here, we review the contexts in which senescent cells mediate wound healing and fibrotic pathology and the potential utility of senotherapeutic drugs for treatment of fibrotic disease.

Recent Findings

Multi-action and temporal considerations influence deleterious versus beneficial actions of senescent cells. Acutely generated senescent cells can limit proliferation, and the senescence-associated secretory phenotype (SASP) contains factors that can facilitate tissue repair. Long-lived senescent cells that evade clearance or are generated outside of programmed remodeling can deplete the progenitor pool to exhaust regenerative capacity and through the SASP, stimulate continual activation, leading to disorganized tissue architecture, fibrotic damage, sterile inflammation, and induction of bystander senescence.

Summary

Senescent cells contribute to fibrotic pathogenesis in multiple tissues, including the liver, kidney, and lung. Senotherapeutics may be a viable strategy for treatment of a range of fibrotic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18(7):1028–40. https://doi.org/10.1038/nm.2807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schafer MJ, Miller JD, LeBrasseur NK. Cellular senescence: implications for metabolic disease. Mol Cell Endocrinol. 2017;455:93–102. https://doi.org/10.1016/j.mce.2016.08.047.

    Article  CAS  PubMed  Google Scholar 

  3. • Munoz-Espin D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15(7):482–96. This review discusses the evidence for benefical and deleterious roles of senescent cells in a range of diseases. https://doi.org/10.1038/nrm3823.

    Article  CAS  PubMed  Google Scholar 

  4. Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, al-Regaiey K, Su L, et al. Ink4a/Arf expression is a biomarker of aging. J Clin Investig. 2004;114(9):1299–307. https://doi.org/10.1172/JCI22475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120(4):513–22. https://doi.org/10.1016/j.cell.2005.02.003.

    Article  CAS  PubMed  Google Scholar 

  6. Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8(9):729–40. https://doi.org/10.1038/nrm2233.

    Article  CAS  PubMed  Google Scholar 

  7. Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci U S A. 1996;93(24):13742–7. https://doi.org/10.1073/pnas.93.24.13742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beausejour CM, et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 2003;22(16):4212–22. https://doi.org/10.1093/emboj/cdg417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kuilman T, Peeper DS. Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer. 2009;9(2):81–94. https://doi.org/10.1038/nrc2560.

    Article  CAS  PubMed  Google Scholar 

  10. Korolchuk VI, Miwa S, Carroll B, von Zglinicki T. Mitochondria in cell senescence: is mitophagy the weakest link? eBioMedicine. 2017;21:7–13. https://doi.org/10.1016/j.ebiom.2017.03.020.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zou Y, Sfeir A, Gryaznov SM, Shay JW, Wright WE. Does a sentinel or a subset of short telomeres determine replicative senescence? Mol Biol Cell. 2004;15(8):3709–18. https://doi.org/10.1091/mbc.E04-03-0207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. d'Adda di Fagagna F, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003;426(6963):194–8. https://doi.org/10.1038/nature02118.

    Article  PubMed  CAS  Google Scholar 

  13. Hewitt G, Jurk D, Marques FDM, Correia-Melo C, Hardy T, Gackowska A, et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun. 2012;3:708. https://doi.org/10.1038/ncomms1708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Adams PD. Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging. Gene. 2007;397(1-2):84–93. https://doi.org/10.1016/j.gene.2007.04.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92(20):9363–7. https://doi.org/10.1073/pnas.92.20.9363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bayreuther K, Rodemann HP, Hommel R, Dittmann K, Albiez M, Francz PI. Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proc Natl Acad Sci U S A. 1988;85(14):5112–6. https://doi.org/10.1073/pnas.85.14.5112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest. 2007;117(3):524–9. https://doi.org/10.1172/JCI31487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hinz B. The myofibroblast: paradigm for a mechanically active cell. J Biomech. 2010;43(1):146–55. https://doi.org/10.1016/j.jbiomech.2009.09.020.

    Article  PubMed  Google Scholar 

  19. Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. 2014;5:123. https://doi.org/10.3389/fphar.2014.00123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Tschumperlin DJ. Matrix, mesenchyme, and mechanotransduction. Ann Am Thorac Soc. 2015;12(Suppl 1):S24–9. https://doi.org/10.1513/AnnalsATS.201407-320MG.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tschumperlin DJ, Liu F, Tager AM. Biomechanical regulation of mesenchymal cell function. Curr Opin Rheumatol. 2013;25(1):92–100. https://doi.org/10.1097/BOR.0b013e32835b13cd.

    Article  PubMed  PubMed Central  Google Scholar 

  22. • Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 2014;31(6):722–33. This study demonstrates a beneficial role for senscence in optimal skin wound healing using a novel suicide-gene transgenic mouse model in which senescent cells can be monitored and deleted. https://doi.org/10.1016/j.devcel.2014.11.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jun JI, Lau LF. Cellular senescence controls fibrosis in wound healing. Aging (Albany NY). 2010;2(9):627–31. https://doi.org/10.18632/aging.100201.

    Article  CAS  Google Scholar 

  24. Lehmann M, et al.. Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo. Eur Respir J. 2017;50. https://doi.org/10.1183/13993003.02367-2016

  25. • Schafer MJ, White TA, Iijima K, Haak AJ, Ligresti G, Atkinson EJ, et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun. 2017;8:14532. This study demonstrates a detrimental role for senscence in fibrotic lung disease, which is ameliorated by transgenic or senolytic clearance of senescent cells. https://doi.org/10.1038/ncomms14532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, et al. Senescence of activated stellate cells limits liver fibrosis. Cell. 2008;134(4):657–67. https://doi.org/10.1016/j.cell.2008.06.049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hecker L, et al. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci Transl Med. 2014;6:231ra247. https://doi.org/10.1126/scitranslmed.3008182.

    Article  CAS  Google Scholar 

  28. Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5(1):99–118. https://doi.org/10.1146/annurev-pathol-121808-102144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ozcan S, et al. Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging (Albany NY). 2016;8(7):1316–29. https://doi.org/10.18632/aging.100971.

    Article  Google Scholar 

  30. Maciel-Baron LA, et al. Senescence associated secretory phenotype profile from primary lung mice fibroblasts depends on the senescence induction stimuli. Age (Dordr). 2016;38(1):26. https://doi.org/10.1007/s11357-016-9886-1.

    Article  CAS  Google Scholar 

  31. Perez-Mancera PA, Young AR, Narita M. Inside and out: the activities of senescence in cancer. Nat Rev Cancer. 2014;14(8):547–58. https://doi.org/10.1038/nrc3773.

    Article  CAS  PubMed  Google Scholar 

  32. Ashcroft GS, Horan MA, Ferguson MW. Aging alters the inflammatory and endothelial cell adhesion molecule profiles during human cutaneous wound healing. Lab Investig. 1998;78(1):47–58.

    CAS  PubMed  Google Scholar 

  33. Waaijer ME, et al. The number of p16INK4a positive cells in human skin reflects biological age. Aging Cell. 2012;11(4):722–5. https://doi.org/10.1111/j.1474-9726.2012.00837.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ressler S, Bartkova J, Niederegger H, Bartek J, Scharffetter-Kochanek K, Jansen-Durr P, et al. p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell. 2006;5(5):379–89. https://doi.org/10.1111/j.1474-9726.2006.00231.x.

    Article  CAS  PubMed  Google Scholar 

  35. Adamus J, Aho S, Meldrum H, Bosko C, Lee JM. p16INK4A influences the aging phenotype in the living skin equivalent. J Investig Dermatol. 2014;134(4):1131–3. https://doi.org/10.1038/jid.2013.468.

    Article  CAS  PubMed  Google Scholar 

  36. Velarde MC, Flynn JM, Day NU, Melov S, Campisi J. Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin. Aging (Albany NY). 2012;4(1):3–12. https://doi.org/10.18632/aging.100423.

    Article  CAS  Google Scholar 

  37. Velarde MC, Demaria M, Melov S, Campisi J. Pleiotropic age-dependent effects of mitochondrial dysfunction on epidermal stem cells. Proc Natl Acad Sci U S A. 2015;112(33):10407–12. https://doi.org/10.1073/pnas.1505675112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jun JI, Lau LF. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol. 2010;12(7):676–85. https://doi.org/10.1038/ncb2070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wiemann SU, Satyanarayana A, Tsahuridu M, Tillmann HL, Zender L, Klempnauer J, et al. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J. 2002;16(9):935–42. https://doi.org/10.1096/fj.01-0977com.

    Article  CAS  PubMed  Google Scholar 

  40. Paradis V, Youssef N, Dargère D, Bâ N, Bonvoust F, Deschatrette J, et al. Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas. Hum Pathol. 2001;32(3):327–32. https://doi.org/10.1053/hupa.2001.22747.

    Article  CAS  PubMed  Google Scholar 

  41. Aravinthan A, Mells G, Allison M, Leathart J, Kotronen A, Yki-Jarvinen H, et al. Gene polymorphisms of cellular senescence marker p21 and disease progression in non-alcohol-related fatty liver disease. Cell Cycle. 2014;13(9):1489–94. https://doi.org/10.4161/cc.28471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lunz JG 3rd, et al. Replicative senescence of biliary epithelial cells precedes bile duct loss in chronic liver allograft rejection: increased expression of p21(WAF1/Cip1) as a disease marker and the influence of immunosuppressive drugs. Am J Pathol. 2001;158(4):1379–90. https://doi.org/10.1016/S0002-9440(10)64089-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y. Autophagy may precede cellular senescence of bile ductular cells in ductular reaction in primary biliary cirrhosis. Dig Dis Sci. 2012;57(3):660–6. https://doi.org/10.1007/s10620-011-1929-y.

    Article  PubMed  Google Scholar 

  44. Borkham-Kamphorst E, Schaffrath C, van de Leur E, Haas U, Tihaa L, Meurer SK, et al. The anti-fibrotic effects of CCN1/CYR61 in primary portal myofibroblasts are mediated through induction of reactive oxygen species resulting in cellular senescence, apoptosis and attenuated TGF-beta signaling. Biochim Biophys Acta. 2014;1843(5):902–14. https://doi.org/10.1016/j.bbamcr.2014.01.023.

    Article  CAS  PubMed  Google Scholar 

  45. Kim KH, Chen CC, Monzon RI, Lau LF. Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Mol Cell Biol. 2013;33(10):2078–90. https://doi.org/10.1128/MCB.00049-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kong X, Feng D, Wang H, Hong F, Bertola A, Wang FS, et al. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology. 2012;56(3):1150–9. https://doi.org/10.1002/hep.25744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sagiv A, Burton DGA, Moshayev Z, Vadai E, Wensveen F, Ben-Dor S, et al. NKG2D ligands mediate immunosurveillance of senescent cells. Aging (Albany NY). 2016;8(2):328–44. https://doi.org/10.18632/aging.100897.

    Article  Google Scholar 

  48. Bataller R, Brenner DA. Liver fibrosis. J Clin Investig. 2005;115(2):209–18. https://doi.org/10.1172/JCI24282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ogrodnik M, Miwa S, Tchkonia T, Tiniakos D, Wilson CL, Lahat A, et al. Cellular senescence drives age-dependent hepatic steatosis. Nat Commun. 2017;8:15691. https://doi.org/10.1038/ncomms15691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Demirci G, Nashan B, Pichlmayr R. Fibrosis in chronic rejection of human liver allografts: expression patterns of transforming growth factor-TGFbeta1 and TGF-beta3. Transplantation. 1996;62(12):1776–83. https://doi.org/10.1097/00007890-199612270-00016.

    Article  CAS  PubMed  Google Scholar 

  51. Ding G, Franki N, Kapasi AA, Reddy K, Gibbons N, Singhal PC. Tubular cell senescence and expression of TGF-beta1 and p21(WAF1/CIP1) in tubulointerstitial fibrosis of aging rats. Exp Mol Pathol. 2001;70(1):43–53. https://doi.org/10.1006/exmp.2000.2346.

    Article  CAS  PubMed  Google Scholar 

  52. Liu J, Yang JR, He YN, Cai GY, Zhang JG, Lin LR, et al. Accelerated senescence of renal tubular epithelial cells is associated with disease progression of patients with immunoglobulin A (IgA) nephropathy. Transl Res. 2012;159(6):454–63. https://doi.org/10.1016/j.trsl.2011.11.008.

    Article  CAS  PubMed  Google Scholar 

  53. Verzola D, Gandolfo MT, Gaetani G, Ferraris A, Mangerini R, Ferrario F, et al. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am J Physiol Renal Physiol. 2008;295(5):F1563–73. https://doi.org/10.1152/ajprenal.90302.2008.

    Article  CAS  PubMed  Google Scholar 

  54. Wolstein JM, Lee DH, Michaud J, Buot V, Stefanchik B, Plotkin MD. INK4a knockout mice exhibit increased fibrosis under normal conditions and in response to unilateral ureteral obstruction. Am J Physiol Renal Physiol. 2010;299(6):F1486–95. https://doi.org/10.1152/ajprenal.00378.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Clements ME, Chaber CJ, Ledbetter SR, Zuk A. Increased cellular senescence and vascular rarefaction exacerbate the progression of kidney fibrosis in aged mice following transient ischemic injury. PLoS One. 2013;8(8):e70464. https://doi.org/10.1371/journal.pone.0070464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Braun H, Schmidt BMW, Raiss M, Baisantry A, Mircea-Constantin D, Wang S, et al. Cellular senescence limits regenerative capacity and allograft survival. J Am Soc Nephrol. 2012;23(9):1467–73. https://doi.org/10.1681/ASN.2011100967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Molitoris BA, Dagher PC, Sandoval RM, Campos SB, Ashush H, Fridman E, et al. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J Am Soc Nephrol. 2009;20(8):1754–64. https://doi.org/10.1681/ASN.2008111204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Joosten SA, van Ham V, Nolan CE, Borrias MC, Jardine AG, Shiels PG, et al. Telomere shortening and cellular senescence in a model of chronic renal allograft rejection. Am J Pathol. 2003;162(4):1305–12. https://doi.org/10.1016/S0002-9440(10)63926-0.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chkhotua AB, Altimari A, Gabusi E, D’Errico A, Yakubovich M, Vienken J, et al. Increased expression of P21((WAF1/CIP1)) CDKI gene in chronic allograft nephropathy correlating with the number of acute rejection episodes. Transplant Proc. 2003;35(2):655–8. https://doi.org/10.1016/S0041-1345(03)00025-3.

    Article  CAS  PubMed  Google Scholar 

  60. Melk A, Schmidt BM, Vongwiwatana A, Rayner DC, Halloran PF. Increased expression of senescence-associated cell cycle inhibitor p16INK4a in deteriorating renal transplants and diseased native kidney. Am J Transplant. 2005;5(6):1375–82. https://doi.org/10.1111/j.1600-6143.2005.00846.x.

    Article  CAS  PubMed  Google Scholar 

  61. McGlynn LM, Stevenson K, Lamb K, Zino S, Brown M, Prina A, et al. Cellular senescence in pretransplant renal biopsies predicts postoperative organ function. Aging Cell. 2009;8(1):45–51. https://doi.org/10.1111/j.1474-9726.2008.00447.x.

    Article  CAS  PubMed  Google Scholar 

  62. Chkhotua AB, Abendroth D, Froeba G, Schelzig H. Up-regulation of cell cycle regulatory genes after renal ischemia/reperfusion: differential expression of p16(INK4a), p21(WAF1/CIP1) and p27(Kip1) cyclin-dependent kinase inhibitor genes depending on reperfusion time. Transpl Int. 2006;19(1):72–7. https://doi.org/10.1111/j.1432-2277.2005.00227.x.

    Article  CAS  PubMed  Google Scholar 

  63. Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med. 2010;16(5):535–43. https://doi.org/10.1038/nm.2144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Muller KC, et al. Lung fibroblasts from patients with emphysema show markers of senescence in vitro. Respir Res. 2006;7(1):32. https://doi.org/10.1186/1465-9921-7-32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Kuwano K, Kunitake R, Kawasaki M, Nomoto Y, Hagimoto N, Nakanishi Y, et al. P21Waf1/Cip1/Sdi1 and p53 expression in association with DNA strand breaks in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 1996;154(2):477–83. https://doi.org/10.1164/ajrccm.154.2.8756825.

    Article  CAS  PubMed  Google Scholar 

  66. Lomas NJ, Watts KL, Akram KM, Forsyth NR, Spiteri MA. Idiopathic pulmonary fibrosis: immunohistochemical analysis provides fresh insights into lung tissue remodelling with implications for novel prognostic markers. Int J Clin Exp Pathol. 2012;5(1):58–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Alvarez D, et al.. IPF lung fibroblasts have a senescent phenotype. Am J Physiol Lung Cell Mol Physiol. 2017;ajplung 00220 02017. https://doi.org/10.1152/ajplung.00220.2017.

  68. Tsuji T, Aoshiba K, Nagai A. Alveolar cell senescence in patients with pulmonary emphysema. Am J Respir Crit Care Med. 2006;174(8):886–93. https://doi.org/10.1164/rccm.200509-1374OC.

    Article  CAS  PubMed  Google Scholar 

  69. Disayabutr S, Kim EK, Cha SI, Green G, Naikawadi RP, Jones KD, et al. miR-34 miRNAs regulate cellular senescence in type II alveolar epithelial cells of patients with idiopathic pulmonary fibrosis. PLoS One. 2016;11(6):e0158367. https://doi.org/10.1371/journal.pone.0158367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Fischer BM, Wong JK, Degan S, Kummarapurugu AB, Zheng S, Haridass P, et al. Increased expression of senescence markers in cystic fibrosis airways. Am J Physiol Lung Cell Mol Physiol. 2013;304(6):L394–400. https://doi.org/10.1152/ajplung.00091.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yanai H, Shteinberg A, Porat Z, Budovsky A, Braiman A, Zeische R, et al. Cellular senescence-like features of lung fibroblasts derived from idiopathic pulmonary fibrosis patients. Aging (Albany NY). 2015;7(9):664–72. https://doi.org/10.18632/aging.100807.

    Article  Google Scholar 

  72. Holz O, Zühlke I, Jaksztat E, Müller KC, Welker L, Nakashima M, et al. Lung fibroblasts from patients with emphysema show a reduced proliferation rate in culture. Eur Respir J. 2004;24(4):575–9. https://doi.org/10.1183/09031936.04.00143703.

    Article  CAS  PubMed  Google Scholar 

  73. Izbicki G, Segel MJ, Christensen TG, Conner MW, Breuer R. Time course of bleomycin-induced lung fibrosis. Int J Exp Pathol. 2002;83(3):111–9. https://doi.org/10.1046/j.1365-2613.2002.00220.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Aoshiba K, Tsuji T, Nagai A. Bleomycin induces cellular senescence in alveolar epithelial cells. Eur Respir J. 2003;22(3):436–43. https://doi.org/10.1183/09031936.03.00011903.

    Article  CAS  PubMed  Google Scholar 

  75. Aoshiba K, Tsuji T, Kameyama S, Itoh M, Semba S, Yamaguchi K, et al. Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury. Exp Toxicol Pathol. 2013;65(7-8):1053–62. https://doi.org/10.1016/j.etp.2013.04.001.

    Article  CAS  PubMed  Google Scholar 

  76. Hashimoto M, et al. Elimination of p19ARF-expressing cells enhances pulmonary function in mice. JCI Insight 1. https://doi.org/10.1172/jci.insight.87732.

  77. Li Y, Jiang D, Liang J, Meltzer EB, Gray A, Miura R, et al. Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. J Exp Med. 2011;208(7):1459–71. https://doi.org/10.1084/jem.20102510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li Y, et al.. Hyaluronan synthase 2 regulates fibroblast senescence in pulmonary fibrosis. Matrix Biol. 2016. https://doi.org/10.1016/j.matbio.2016.03.004.

  79. Roos CM, Hagler M, Zhang B, Oehler EA, Arghami A, Miller JD. Transcriptional and phenotypic changes in aorta and aortic valve with aging and MnSOD deficiency in mice. Am J Physiol Heart Circ Physiol. 2013;305(10):H1428–39. https://doi.org/10.1152/ajpheart.00735.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vasile E, Tomita Y, Brown LF, Kocher O, Dvorak HF. Differential expression of thymosin beta-10 by early passage and senescent vascular endothelium is modulated by VPF/VEGF: evidence for senescent endothelial cells in vivo at sites of atherosclerosis. FASEB J. 2001;15(2):458–66. https://doi.org/10.1096/fj.00-0051com.

    Article  CAS  PubMed  Google Scholar 

  81. Minamino T, Yoshida T, Tateno K, Miyauchi H, Zou Y, Toko H, et al. Ras induces vascular smooth muscle cell senescence and inflammation in human atherosclerosis. Circulation. 2003;108(18):2264–9. https://doi.org/10.1161/01.CIR.0000093274.82929.22.

    Article  CAS  PubMed  Google Scholar 

  82. Roos CM, et al.. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell. 2016. https://doi.org/10.1111/acel.12458.

  83. Zhu F, Li Y, Zhang J, Piao C, Liu T, Li HH, et al. Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction. PLoS One. 2013;8(9):e74535. https://doi.org/10.1371/journal.pone.0074535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jaster R, Emmrich J. Crucial role of fibrogenesis in pancreatic diseases. Best Pract Res Clin Gastroenterol. 2008;22(1):17–29. https://doi.org/10.1016/j.bpg.2007.10.004.

    Article  CAS  PubMed  Google Scholar 

  85. Fitzner B, Müller S, Walther M, Fischer M, Engelmann R, Müller-Hilke B, et al. Senescence determines the fate of activated rat pancreatic stellate cells. J Cell Mol Med. 2012;16(11):2620–30. https://doi.org/10.1111/j.1582-4934.2012.01573.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lepper C, Partridge TA, Fan CM. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development. 2011;138(17):3639–46. https://doi.org/10.1242/dev.067595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sousa-Victor P, Gutarra S, García-Prat L, Rodriguez-Ubreva J, Ortet L, Ruiz-Bonilla V, et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature. 2014;506(7488):316–21. https://doi.org/10.1038/nature13013.

    Article  CAS  PubMed  Google Scholar 

  88. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016;530(7589):184–9. https://doi.org/10.1038/nature16932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479(7372):232–6. https://doi.org/10.1038/nature10600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schafer MJ, et al.. Exercise prevents diet-induced cellular senescence in adipose tissue. Diabetes. 2016. https://doi.org/10.2337/db15-0291.

  91. Farr JN, Xu M, Weivoda MM, Monroe DG, Fraser DG, Onken JL, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med. 2017;23(9):1072–9. https://doi.org/10.1038/nm.4385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. •• Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644–58. This study describes the first discovery of senolytic drugs. https://doi.org/10.1111/acel.12344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Condorelli F, Genazzani AA. Dasatinib is it all in the dose? BioDrugs. 2010;24(3):157–63. https://doi.org/10.2165/11535870-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  94. Khan F, et al.. Molecular targets underlying the anticancer effects of quercetin: an update. Nutrients. 2016;8. https://doi.org/10.3390/nu8090529.

  95. Zhu Y, et al. New agents that target senescent cells: the flavone, fisetin, and the BCL-X-L inhibitors, A1331852 and A1155463. Aging. 2017;9:955–63. https://doi.org/10.18632/aging.101202.

    PubMed  PubMed Central  Google Scholar 

  96. Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016;22(1):78–83. https://doi.org/10.1038/nm.4010.

    Article  CAS  PubMed  Google Scholar 

  97. Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell. 2016;15(3):428–35. https://doi.org/10.1111/acel.12445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yosef R, Pilpel N, Tokarsky-Amiel R, Biran A, Ovadya Y, Cohen S, et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun. 2016;7:11190. https://doi.org/10.1038/ncomms11190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Moncsek A, et al. Targeting senescent cholangiocytes and activated fibroblasts with Bcl-xL inhibitors ameliorates fibrosis in Mdr2−/− mice. Hepatology. 2017. https://doi.org/10.1002/hep.29464.

  100. • Fuhrmann-Stroissnigg H, et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun. 2017;8. This study describes a screening platform for identification of novel senotheraputic drugs. https://doi.org/10.1038/s41467-017-00314-z.

  101. Fielding CA, Jones GW, McLoughlin RM, McLeod L, Hammond VJ, Uceda J, et al. Interleukin-6 signaling drives fibrosis in unresolved inflammation. Immunity. 2014;40(1):40–50. https://doi.org/10.1016/j.immuni.2013.10.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen R, Chen B. Siltuximab (CNTO 328): a promising option for human malignancies. Drug Des Devel Ther. 2015;9:3455–8. https://doi.org/10.2147/DDDT.S86438.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Bose P, Abou Zahr A, Verstovsek S. Investigational Janus kinase inhibitors in development for myelofibrosis. Expert Opin Investig Drugs. 2017;26(6):723–34. https://doi.org/10.1080/13543784.2017.1323871.

    Article  CAS  PubMed  Google Scholar 

  104. Xu M, Tchkonia T, Ding H, Ogrodnik M, Lubbers ER, Pirtskhalava T, et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Natl Acad Sci U S A. 2015;112(46):E6301–10. https://doi.org/10.1073/pnas.1515386112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gadina M, Gazaniga N, Vian L, Furumoto Y. Small molecules to the rescue: Inhibition of cytokine signaling in immune-mediated diseases. J Autoimmun. 2017. https://doi.org/10.1016/j.jaut.2017.06.006.

  106. Wada E, Tanihata J, Iwamura A, Takeda S, Hayashi YK, Matsuda R. Treatment with the anti-IL-6 receptor antibody attenuates muscular dystrophy via promoting skeletal muscle regeneration in dystrophin-/utrophin-deficient mice. Skelet Muscle. 2017;7(1):23. https://doi.org/10.1186/s13395-017-0140-z.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Chakraborty D, Šumová B, Mallano T, Chen CW, Distler A, Bergmann C, et al. Activation of STAT3 integrates common profibrotic pathways to promote fibroblast activation and tissue fibrosis. Nat Commun. 2017;8(1):1130. https://doi.org/10.1038/s41467-017-01236-6.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ikeda K, Ueda K, Sano T, Ogawa K, Ikezoe T, Hashimoto Y, et al. The amelioration of myelofibrosis with thrombocytopenia by a JAK1/2 inhibitor, ruxolitinib, in a post-polycythemia vera myelofibrosis patient with a JAK2 exon 12 mutation. Intern Med. 2017;56(13):1705–10. https://doi.org/10.2169/internalmedicine.56.7871.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Komar HM, Serpa G, Kerscher C, Schwoegl E, Mace TA, Jin M, et al. Inhibition of Jak/STAT signaling reduces the activation of pancreatic stellate cells in vitro and limits caerulein-induced chronic pancreatitis in vivo. Sci Rep. 2017;7(1):1787. https://doi.org/10.1038/s41598-017-01973-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013;15(8):978–90. https://doi.org/10.1038/ncb2784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12(6):325–38. https://doi.org/10.1038/nrneph.2016.48.

    Article  CAS  PubMed  Google Scholar 

  112. Sagiv A, Biran A, Yon M, Simon J, Lowe SW, Krizhanovsky V. Granule exocytosis mediates immune surveillance of senescent cells. Oncogene. 2013;32(15):1971–7. https://doi.org/10.1038/onc.2012.206.

    Article  CAS  PubMed  Google Scholar 

  113. Berger KN, Pu JJ. PD-1 pathway and its clinical application: a 20-year journey after discovery of the complete human PD-1 gene. Gene. 2018;638:20–5. https://doi.org/10.1016/j.gene.2017.09.050.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would also like to thank Matthew M. Moore from the Mayo Clinic Center for Innovation for help with the illustration.

Funding

We gratefully acknowledge support from the Glenn/AFAR post-doctoral fellowship program for translational research on aging (M.J.S.), the National Institutes of Health HL092961 (D.J.T.) and AG052958 (N.K.L.), and the John E. and Virginia H. Kunkel Family (N.K.L).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan K. LeBrasseur.

Ethics declarations

Conflict of Interest

Dr. LeBrasseur has patent killing senescent cells and treating senescence-associated conditions issued and patent compositions and methods for treating senescence-associated diseases and disorders issued. Drs. Schafer, Haak, and Tschumperlin have no conflicts of interest to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Scleroderma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schafer, M.J., Haak, A.J., Tschumperlin, D.J. et al. Targeting Senescent Cells in Fibrosis: Pathology, Paradox, and Practical Considerations. Curr Rheumatol Rep 20, 3 (2018). https://doi.org/10.1007/s11926-018-0712-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-018-0712-x

Keywords

Navigation