Skip to main content

Advertisement

Log in

The Role of Transposable Elements in Congenital Malformations with Notes on Their Potential Implications for Morphological Evolution in Mammals

  • Evolutionary Developmental Biology (R Diogo and E Boyle, Section Editors)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Transposable elements are mobile genetic units within mammalian genomes that produce genomic structural variation in evolution, development, and disease. However, the role of transposable elements in developing congenital malformations is not commonly acknowledged.

Recent Findings

We reviewed 13 congenital malformations in which transposition has modified, deleted, or added new regulatory regions (genomic and epigenomic) in genetic regulatory networks. These include heart defects, ciliopathies, anomalies of kidney and urinary tract, and skeletal malformations such as polydactyly and craniosynostosis.

Summary

The mechanisms by which transposition causes congenital malformations are a window to understand how development is regulated and can lead to new insights on the evolution of morphological traits. Similar transposition events to those described for congenital malformations may trigger changes of development over time and impact the evolution of morphological traits, as suggested by recent advances in evolutionary developmental pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Larsen PA, Matocq MD. Emerging genomic applications in mammalian ecology, evolution, and conservation. J Mammal. 2019;100:786–801.

    Article  Google Scholar 

  2. Meadows JRS, Lindblad-Toh K. Dissecting evolution and disease using comparative vertebrate genomics. Nat Rev Genet. 2017;18:624–36.

    Article  CAS  PubMed  Google Scholar 

  3. Pavlopoulos GA, Oulas A, Iacucci E, Sifrim A, Moreau Y, Schneider R, et al. Unraveling genomic variation from next generation sequencing data. BioData Min. 2013;6:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Luis Villanueva-Cañas J, Ruiz-Orera J, Agea MI, Gallo M, Andreu D, Albà MM. New genes and functional innovation in mammals. Genome Biol Evol. 2017;9:1886–900.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Albalat R, Cañestro C. Evolution by gene loss. Nat Rev Genet. 2016;17:379–91.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang F, Gu W, Hurles ME, Lupski JR. Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet. 2009;10:451–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lynch VJ, Leclerc RD, May G, Wagner GP. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet. 2011;43:1154–9.

    Article  CAS  PubMed  Google Scholar 

  8. Gordon KL, Ruvinsky I. Tempo and mode in evolution of transcriptional regulation. PLoS Genet. 2012;8:e1002432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet. 2006;7:85–97.

    Article  CAS  PubMed  Google Scholar 

  10. Pevzner P, Tesler G. Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Genome Res. 2003;13:37–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Adams KL, Wendel JF. Polyploidy and genome evolution in plants. Curr Opin Plant Biol. 2005;8:135–41.

    Article  CAS  PubMed  Google Scholar 

  12. Ferguson-Smith MA, Trifonov V. Mammalian karyotype evolution. Nat Rev Genet. 2007;8:950–62.

    Article  CAS  PubMed  Google Scholar 

  13. McClintock B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci. 1950;36:344–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. • Bourque G, Burns KH, Gehring M, et al. Ten things you should know about transposable elements. Genome Biol. 2018;19:199. This paper provides an overview to transposable elements.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kvikstad EM, Piazza P, Taylor JC, Lunter G. A high throughput screen for active human transposable elements. BMC Genomics. 2018;19:115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cammen KM, Andrews KR, Carroll EL, Foote AD, Humble E, Khudyakov JI, et al. Genomic methods take the plunge: recent advances in high-throughput sequencing of marine mammals. J Hered. 2016;107:481–95.

    Article  CAS  PubMed  Google Scholar 

  17. • Platt RN, Vandewege MW, Ray DA. Mammalian transposable elements and their impacts on genome evolution. Chromosom Res. 2018;26:25–43. This paper reviews the impact of TEs in mammalian evolution.

    Article  CAS  Google Scholar 

  18. Huda A, Mariño-Ramírez L, Jordan IK. Epigenetic histone modifications of human transposable elements: genome defense versus exaptation. Mob DNA. 2010;1:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Bogdan L, Barreiro L, Bourque G. Transposable elements have contributed human regulatory regions that are activated upon bacterial infection. Philos Trans R Soc B Biol Sci. 2020;375:20190332.

    Article  Google Scholar 

  20. Chénais B. Transposable elements and human cancer: a causal relationship? Biochim Biophys Acta BBA - Rev Cancer. 2013;1835:28–35.

    Article  CAS  Google Scholar 

  21. Volff J-N. Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. BioEssays. 2006;28:913–22.

    Article  CAS  PubMed  Google Scholar 

  22. Hutchins AP, Pei D. Transposable elements at the center of the crossroads between embryogenesis, embryonic stem cells, reprogramming, and long non-coding RNAs. Sci Bull. 2015;60:1722–33.

    Article  CAS  Google Scholar 

  23. •• Larsen PA, Hunnicutt KE, Larsen RJ, Yoder AD, Saunders AM. Warning SINEs: Alu elements, evolution of the human brain, and the spectrum of neurological disease. Chromosom Res. 2018;26:93–111. This paper describes the mechanisms Alu TEs and links human evolution and disease.

    Article  CAS  Google Scholar 

  24. Reilly MT, Faulkner GJ, Dubnau J, Ponomarev I, Gage FH. The role of transposable elements in health and diseases of the central nervous system. J Neurosci. 2013;33:17577–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Diogo R, Smith CM, Ziermann JM. Evolutionary developmental pathology and anthropology: a new field linking development, comparative anatomy, human evolution, morphological variations and defects, and medicine. Dev Dyn. 2015;244:1357–74.

    Article  PubMed  Google Scholar 

  26. Diogo R, Guinard G, Diaz RE. Dinosaurs, chameleons, humans, and evo-devo-path: linking Étienne Geoffroy’s teratology, Waddington’s homeorhesis, Alberch’s logic of “monsters,” and Goldschmidt hopeful “monsters.”. J Exp Zoolog B Mol Dev Evol. 2017;328:207–29.

    Article  Google Scholar 

  27. Wicker T, Sabot F, Hua-Van A, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007;8:973–82.

    Article  CAS  PubMed  Google Scholar 

  28. Elbarbary RA, Lucas BA, Maquat LE. Retrotransposons as regulators of gene expression. Science. 2016;351:aac7247.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Feschotte C, Pritham EJ. DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet. 2007;41:331–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Garcia-Perez JL, Widmann TJ, Adams IR. The impact of transposable elements on mammalian development. Development. 2016;143:4101–14.

    Article  CAS  PubMed  Google Scholar 

  31. •• Marchant TW, Johnson EJ, McTeir L, et al. Canine brachycephaly is associated with a retrotransposon-mediated missplicing of SMOC2. Curr Biol CB. 2017;27:1573–1584.e6. This paper demonstrates a link between transposition and morphological variation in selected dog breeds with cranial phenotypes analogous to that of Apert syndrome.

    Article  CAS  PubMed  Google Scholar 

  32. Hancks DC, Kazazian HH. Active human retrotransposons: variation and disease. Curr Opin Genet Dev. 2012;22:191–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet. 2009;10:691–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hartl DL, Lozovskaya ER, Lawrence JG. Nonautonomous transposable elements in prokaryotes and eukaryotes. Genetica. 1992;86:47–53.

    Article  CAS  PubMed  Google Scholar 

  35. Kojima KK. Human transposable elements in Repbase: genomic footprints from fish to humans. Mob DNA. 2018;9:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Draaken M, Knapp M, Pennimpede T, Schmidt JM, Ebert AK, Rösch W, et al. Genome-wide association study and meta-analysis identify ISL1 as genome-wide significant susceptibility gene for bladder exstrophy. PLoS Genet. 2015;11:e1005024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kim S, Cho C-S, Han K, Lee J. Structural variation of Alu element and human disease. Genomics Inform. 2016;14:70–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pace JK, Feschotte C. The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res. 2007;17:422–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakama M, Otsuka H, Ago Y, Sasai H, Abdelkreem E, Aoyama Y, et al. Intronic antisense Alu elements have a negative splicing effect on the inclusion of adjacent downstream exons. Gene. 2018;664:84–9.

    Article  CAS  PubMed  Google Scholar 

  40. Häsler J, Strub K. Alu elements as regulators of gene expression. Nucleic Acids Res. 2006;34:5491–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Englander EW, Howard BH. Nucleosome positioning by human Alu elements in chromatin. J Biol Chem. 1995;270:10091–6.

    Article  CAS  PubMed  Google Scholar 

  42. Su M, Han D, Boyd-Kirkup J, Yu X, Han J-DJ. Evolution of Alu elements toward enhancers. Cell Rep. 2014;7:376–85.

    Article  CAS  PubMed  Google Scholar 

  43. Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet. 2007;8:272–85.

    Article  CAS  PubMed  Google Scholar 

  44. Warkany J, Kalter H. Congenital malformations. N Engl J Med. 1961;265:993–1001.

    Article  Google Scholar 

  45. Armand T, Schaefer E, Di Rocco F, Edery P, Collet C, Rossi M. Genetic bases of craniosynostoses: an update. Neurochirurgie. 2019;65:196–201.

    Article  CAS  PubMed  Google Scholar 

  46. Lupo PJ, Mitchell LE, Jenkins MM. Genome-wide association studies of structural birth defects: a review and commentary. Birth Defects Res. 2019;111:1329–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reynolds K, Kumari P, Sepulveda Rincon L, Gu R, Ji Y, Kumar S, et al. Wnt signaling in orofacial clefts: crosstalk, pathogenesis and models. Dis Model Mech. 2019;12:dmm037051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sabir AH, Cole T. The evolving therapeutic landscape of genetic skeletal disorders. Orphanet J Rare Dis. 2019;14:300.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Takenouchi T, Kuchikata T, Yoshihashi H, Fujiwara M, Uehara T, Miyama S, et al. Diagnostic use of computational retrotransposon detection: successful definition of pathogenetic mechanism in a ciliopathy phenotype. Am J Med Genet A. 2017;173:1353–7.

    Article  CAS  PubMed  Google Scholar 

  50. •• Tavares E, Tang CY, Vig A, Li S, Billingsley G, Sung W, et al. Retrotransposon insertion as a novel mutational event in Bardet-Biedl syndrome. Mol Genet Genomic Med. 2019;7:e00521. This paper demonstrates a TE insertion as a causing mechanisms in a congenital birth defect.

    Article  PubMed  CAS  Google Scholar 

  51. Bochukova EG, Roscioli T, Hedges DJ, Taylor IB, Johnson D, David DJ, et al. Rare mutations of FGFR2 causing apert syndrome: identification of the first partial gene deletion, and an Alu element insertion from a new subfamily. Hum Mutat. 2009;30:204–11.

    Article  CAS  PubMed  Google Scholar 

  52. Thien H, Rüther U. The mouse mutation Pdn (Polydactyly Nagoya) is caused by the integration of a retrotransposon into the Gli3 gene. Mamm Genome Off J Int Mamm Genome Soc. 1999;10:205–9.

    Article  CAS  Google Scholar 

  53. Lugani F, Arora R, Papeta N, Patel A, Zheng Z, Sterken R, et al. A retrotransposon insertion in the 5′ regulatory domain of Ptf1a results in ectopic gene expression and multiple congenital defects in Danforth’s short tail mouse. PLoS Genet. 2013;9:e1003206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang R, Knapp M, Kause F, Reutter H, Ludwig M. Role of the LF-SINE-derived distal ISL1 enhancer in patients with classic bladder exstrophy. J Pediatr Genet. 2017;06:169–73.

    Article  CAS  Google Scholar 

  55. Sheng W, Qian Y, Wang H, Ma X, Zhang P, Chen L, et al. Association between mRNA levels of DNMT1, DNMT3A, DNMT3B, MBD2 and LINE-1 methylation status in infants with tetralogy of Fallot. Int J Mol Med. 2013;32:694–702.

    Article  CAS  PubMed  Google Scholar 

  56. •• Siomou E, Mitsioni AG, Giapros V, Bouba I, Noutsopoulos D, Georgiou I. Copy-number variation analysis in familial nonsyndromic congenital anomalies of the kidney and urinary tract: evidence for the causative role of a transposable element-associated genomic rearrangement. Mol Med Rep. 2017;15:3631–6. This paper describes the effect of copy number variation caused by TEs as a source of congenital anomalies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Batzir NA, Posey JE, Song X, et al. Phenotypic expansion of POGZ-related intellectual disability syndrome (White-Sutton syndrome). Am J Med Genet A. 2020;182:38–52.

    Article  CAS  Google Scholar 

  58. Nishihara H, Kobayashi N, Kimura-Yoshida C, Yan K, Bormuth O, Ding Q, et al. Coordinately co-opted multiple transposable elements constitute an enhancer for wnt5a expression in the mammalian secondary palate. PLoS Genet. 2016;12:e1006380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Ye Y, Cho MT, Retterer K, Alexander N, Ben-Omran T, al-Mureikhi M, et al. De novo POGZ mutations are associated with neurodevelopmental disorders and microcephaly. Mol Case Stud. 2015;1:a000455.

    Article  Google Scholar 

  60. Hartill V, Szymanska K, Sharif SM, Wheway G, Johnson CA. Meckel–Gruber syndrome: an update on diagnosis, clinical management, and research advances. Front Pediatr. 2017;5:244.

  61. Waters AM, Beales PL. Ciliopathies: an expanding disease spectrum. Pediatr Nephrol. 2011;26:1039–56.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tallila J, Jakkula E, Peltonen L, Salonen R, Kestilä M. Identification of CC2D2A as a Meckel syndrome gene adds an important piece to the ciliopathy puzzle. Am J Hum Genet. 2008;82:1361–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Forsythe E, Beales PL. Bardet–Biedl syndrome. Eur J Hum Genet. 2013;21:8–13.

    Article  CAS  PubMed  Google Scholar 

  64. Wilkie AOM, Slaney SF, Oldridge M, Poole MD, Ashworth GJ, Hockley AD, et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet. 1995;9:165–72.

    Article  CAS  PubMed  Google Scholar 

  65. Derderian C, Seaward J. Syndromic craniosynostosis. Semin Plast Surg. 2012;26:064–75.

    Article  Google Scholar 

  66. Holmes G, O’Rourke C, Perrine SMM, Lu N, van Bakel H, Richtsmeier JT, et al. Midface and upper airway dysgenesis in FGFR2-related craniosynostosis involves multiple tissue-specific and cell cycle effects. Development. 2018;145:dev166488.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Dempsey RF, Monson LA, Maricevich RS, Truong TA, Olarunnipa S, Lam SK, et al. Nonsyndromic craniosynostosis. Clin Plast Surg. 2019;46:123–39.

    Article  PubMed  Google Scholar 

  68. Rac MWF, McKinney J, Gandhi M. Polydactyly. Am J Obstet Gynecol. 2019;221:B13–5.

    Article  PubMed  Google Scholar 

  69. •• Crowley B, Stevenson S, Diogo R. Radial polydactyly: putting together evolution, development and clinical anatomy. J Hand Surg Eur Vol. 2018;44:51–8. This paper illustrates the study of congenital malformations and evolution within a unifying framework.

    Article  PubMed  Google Scholar 

  70. Richtsmeier JT, Aldridge K, DeLeon VB, Panchal J, Kane AA, Marsh JL, et al. Phenotypic integration of neurocranium and brain. J Exp Zoolog B Mol Dev Evol. 2006;306B:360–78.

    Article  Google Scholar 

  71. Esteve-Altava B, Rasskin-Gutman D. Evo-Devo insights from pathological networks: exploring craniosynostosis as a developmental mechanism for modularity and complexity in the human skull. J Anthropol Sci. 2015;93:103–17.

  72. Woolf AS, Lopes FM, Ranjzad P, Roberts NA. Congenital disorders of the human urinary tract: recent insights from genetic and molecular studies. Front Pediatr. 2019;7:136.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Dunn EA, Kasprenski M, Facciola J, Benz K, Maruf M, Zaman MH, et al. Anatomy of classic bladder exstrophy: MRI findings and surgical correlation. Curr Urol Rep. 2019;20:48.

    Article  PubMed  Google Scholar 

  74. Joly-Lopez Z, Bureau TE. Exaptation of transposable element coding sequences. Curr Opin Genet Dev. 2018;49:34–42.

    Article  CAS  PubMed  Google Scholar 

  75. Matsumura K, Seiriki K, Okada S, et al. Pathogenic POGZ mutation causes impaired cortical development and reversible autism-like phenotypes. Nat Commun. 2020;11:1–16.

    Article  CAS  Google Scholar 

  76. Tudor M, Lobocka M, Goodell M, Pettitt J, O’Hare K. The pogo transposable element family of Drosophila melanogaster. Mol Gen Genet MGG. 1992;232:126–34.

    Article  CAS  PubMed  Google Scholar 

  77. Mateo L, González J. Pogo-like transposases have been repeatedly domesticated into CENPB-related proteins. Genome Biol Evol. 2014;6:2008–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Woods CG, Bond J, Enard W. Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings. Am J Hum Genet. 2005;76:717–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mossey PA, Little J, Munger RG, Dixon MJ, Shaw WC. Cleft lip and palate. Lancet. 2009;374:1773–85.

    Article  PubMed  Google Scholar 

  80. Chiquet BT, Blanton SH, Burt A, Ma D, Stal S, Mulliken JB, et al. Variation in WNT genes is associated with non-syndromic cleft lip with or without cleft palate. Hum Mol Genet. 2008;17:2212–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Boeke JD, Stoye JP. Retrotransposons, endogenous retroviruses, and the evolution of retroelements. In: Coffin JM, Hughes SH, Varmus HE, editors. Retroviruses. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 1997. pp. 343–436.

  82. Kaneko-Ishino T, Ishino F. The role of genes domesticated from LTR retrotransposons and retroviruses in mammals. Front Microbiol. 2012;3:262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dupressoir A, Vernochet C, Harper F, Guégan J, Dessen P, Pierron G, et al. A pair of co-opted retroviral envelope syncytin genes is required for formation of the two-layered murine placental syncytiotrophoblast. Proc Natl Acad Sci U S A. 2011;108:E1164–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Konkel MK, Walker JA, Batzer MA. LINEs and SINEs of primate evolution. Evol Anthropol. 2010;19:236–49.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Reichmann J, Crichton JH, Madej MJ, Taggart M, Gautier P, Garcia-Perez JL, et al. Microarray analysis of LTR retrotransposon silencing identifies Hdac1 as a regulator of retrotransposon expression in mouse embryonic stem cells. PLoS Comput Biol. 2012;8:e1002486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, de Sapio F, et al. Somatic retrotransposition alters the genetic landscape of the human brain. Nature. 2011;479:534–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bard J. Generating anatomical variation through mutations in networks - implications for evolution. J Anat. 2014;225:123–31.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Arcadi Navarro and one anonymous reviewer for their valuable comments.

Funding

This project is supported through the Postdoctoral Junior Leader Fellowship Programme from “la Caixa” Banking Foundation (LCF/BQ/LI18/11630002) to BE-A. We thank the Unidad de Excelencia María de Maeztu funded by the AEI (CEX2018-000792-M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borja Esteve-Altava.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Evolutionary Developmental Biology

Electronic supplementary material

ESM 1

(PDF 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barteri, F., Esteve-Altava, B. The Role of Transposable Elements in Congenital Malformations with Notes on Their Potential Implications for Morphological Evolution in Mammals. Curr Mol Bio Rep 6, 71–78 (2020). https://doi.org/10.1007/s40610-020-00134-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-020-00134-z

Keywords

Navigation