Skip to main content

Advertisement

Log in

Lung Cancer Stem Cells: Insights into Characterization and Regulatory Mechanisms

  • Molecular Biotechnology of Adult Stem Cells (G Stein, Section Editor)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Lung cancer is the leading cause of cancer-related mortality worldwide. The five-year survival rate is very low in lung cancer patients due to diagnosis at late stages, tumor recurrence, and drug resistance. Recent studies suggest that cancer cells with self-renewal capacity contribute to tumor growth. Identification of reliable markers for cancer stem cell populations and mechanistic understanding of associated signaling pathways and regulatory factors are critically needed to improve long-term survival.

Recent Findings

Several studies have established the expression of stem cell markers (aldehyde dehydrogenase ALDH1, glycoprotein CD44 and CD133) in lung cancer cell lines and clinical samples. Association of these stem cell markers with lung cancer and the signaling pathways (Wnt, Notch, and Hedgehog) maintaining stem cell characteristics are briefly reviewed here. Interestingly, epigenetic mechanisms and regulatory roles of transcription factors such as Sox2 and Runx family members have been shown to contribute to stem cell properties and lung cancer.

Summary

Understanding mechanisms regulating “stemness” and differentiation of lung epithelial cells will lead to novel therapies for successful targeting of cancer stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.

    Article  PubMed  Google Scholar 

  2. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359(13):1367–80.

    Article  PubMed  CAS  Google Scholar 

  3. De Leyn P, Dooms C, Kuzdzal J, Lardinois D, Passlick B, Rami-Porta R, et al. Revised ESTS guidelines for preoperative mediastinal lymph node staging for non-small-cell lung cancer. Eur J Cardiothorac Surg. 2014;45(5):787–98.

    Article  PubMed  Google Scholar 

  4. De Leyn P, Dooms C, Kuzdzal J, Lardinois D, Passlick B, Rami-Porta R, et al. Preoperative mediastinal lymph node staging for non-small cell lung cancer: 2014 update of the 2007 ESTS guidelines. Transl Lung Cancer Res. 2014;3(4):225–33.

    PubMed  PubMed Central  Google Scholar 

  5. Ellis PM, Vandermeer R. Delays in the diagnosis of lung cancer. J Thorac Dis. 2011;3(3):183–8.

    PubMed  PubMed Central  Google Scholar 

  6. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300.

    Article  PubMed  Google Scholar 

  7. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

    Article  PubMed  Google Scholar 

  8. Alvarado-Luna G, Morales-Espinosa D. Treatment for small cell lung cancer, where are we now?-a review. Transl Lung Cancer Res. 2016;5(1):26–38.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Kelsey CR, Marks LB, Hollis D, Hubbs JL, Ready NE, D’Amico TA, et al. Local recurrence after surgery for early stage lung cancer: an 11-year experience with 975 patients. Cancer. 2009;115(22):5218–27.

    Article  PubMed  Google Scholar 

  10. Taylor MD, Nagji AS, Bhamidipati CM, Theodosakis N, Kozower BD, Lau CL, et al. Tumor recurrence after complete resection for non-small cell lung cancer. Ann Thorac Surg. 2012;93(6):1813–20.

    Article  PubMed  Google Scholar 

  11. Burdett S, Pignon JP, Tierney J, Tribodet H, Stewart L, Le Pechoux C, et al. Adjuvant chemotherapy for resected early-stage non-small cell lung cancer. Cochrane Database Syst Rev. 2015;2(3):CD011430.

    Google Scholar 

  12. Jiang L, Liang W, Shen J, Chen X, Shi X, He J, et al. The impact of visceral pleural invasion in node-negative non-small cell lung cancer: a systematic review and meta-analysis. Chest. 2015;148(4):903–11.

    Article  PubMed  Google Scholar 

  13. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  PubMed  CAS  Google Scholar 

  14. Schittny JC. Development of the lung. Cell Tissue Res. 2017;367(3):427–44.

    Article  PubMed  PubMed Central  Google Scholar 

  15. McQualter JL, Yuen K, Williams B, Bertoncello I. Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci U S A. 2010;107(4):1414–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.

    Article  PubMed  CAS  Google Scholar 

  17. Wang JC, Dick JE. Cancer stem cells: lessons from leukemia. Trends Cell Biol. 2005;15(9):494–501.

    Article  PubMed  CAS  Google Scholar 

  18. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A. Tumor growth need not be driven by rare cancer stem cells. Science. 2007;317(5836):337.

    Article  PubMed  CAS  Google Scholar 

  19. Salcido CD, Larochelle A, Taylor BJ, Dunbar CE, Varticovski L. Molecular characterisation of side population cells with cancer stem cell-like characteristics in small-cell lung cancer. Br J Cancer. 2010;102(11):1636–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. O'Flaherty JD, Barr M, Fennell D, Richard D, Reynolds J, O'Leary J, et al. The cancer stem-cell hypothesis: its emerging role in lung cancer biology and its relevance for future therapy. J Thorac Oncol. 2012;7(12):1880–90.

    Article  PubMed  CAS  Google Scholar 

  21. Wang P, Gao Q, Suo Z, Munthe E, Solberg S, Ma L, et al. Identification and characterization of cells with cancer stem cell properties in human primary lung cancer cell lines. PLoS One. 2013;8(3):e57020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Cruz MH, Siden A, Calaf GM, Delwar ZM, Yakisich JS. The stemness phenotype model. ISRN Oncol. 2012;2012:392647.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science. 1977;197(4302):461–3.

    Article  PubMed  CAS  Google Scholar 

  25. Pastrana E, Silva-Vargas V, Doetsch F. Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell. 2011;8(5):486–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Chute JP, Muramoto GG, Whitesides J, Colvin M, Safi R, Chao NJ, et al. Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proc Natl Acad Sci U S A. 2006;103(31):11707–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kastan MB, Schlaffer E, Russo JE, Colvin OM, Civin CI, Hilton J. Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood. 1990;75(10):1947–50.

    PubMed  CAS  Google Scholar 

  28. •• Jiang F, Qiu Q, Khanna A, Todd NW, Deepak J, Xing L, et al. Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res. 2009;7(3):330–8. This article describes the phenotype associated with ALDH-positive cells and their contributions to tumor development relative to ALDH negative cells

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Chen YC, Hsu HS, Chen YW, Tsai TH, How CK, Wang CY, et al. Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One. 2008;3(7):e2637.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2008;15(3):504–14.

    Article  PubMed  CAS  Google Scholar 

  31. Leung EL, Fiscus RR, Tung JW, Tin VP, Cheng LC, Sihoe AD, et al. Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One. 2010;5(11):e14062.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Qiu X, Wang Z, Li Y, Miao Y, Ren Y, Luan Y. Characterization of sphere-forming cells with stem-like properties from the small cell lung cancer cell line H446. Cancer Lett. 2012;323(2):161–70.

    Article  PubMed  CAS  Google Scholar 

  33. Yan Y, Zuo X, Wei D. Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med. 2015;4(9):1033–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Li Z. CD133: a stem cell biomarker and beyond. Exp Hematol Oncol. 2013;2(1):17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Iida H, Suzuki M, Goitsuka R, Ueno H. Hypoxia induces CD133 expression in human lung cancer cells by up-regulation of OCT3/4 and SOX2. Int J Oncol. 2012;40(1):71–9.

    PubMed  CAS  Google Scholar 

  36. •• Marcato P, Dean CA, Giacomantonio CA, Lee PW. Aldehyde dehydrogenase: its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle. 2011;10(9):1378–84. This article discusses the correlations between ALDH isoforms and cancer prognosis and the variations in isoform expression observed between cancer types.

    Article  PubMed  CAS  Google Scholar 

  37. Shao C, Sullivan JP, Girard L, Augustyn A, Yenerall P, Rodriguez-Canales J, et al. Essential role of aldehyde dehydrogenase 1A3 for the maintenance of non-small cell lung cancer stem cells is associated with the STAT3 pathway. Clin Cancer Res. 2014;20(15):4154–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. •• Sullivan JP, Spinola M, Dodge M, Raso MG, Behrens C, Gao B, et al. Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res. 2010;70(23):9937–48. This article discusses the expression of ALDH isoforms in non-small cell lung cancer cell lines and patient samples and demonstrates a correlation between ALDH isoform ALDH1A1 and poor prognosis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Xu X, Chai S, Wang P, Zhang C, Yang Y, Yang Y, et al. Aldehyde dehydrogenases and cancer stem cells. Cancer Lett. 2015;369(1):50–7.

    Article  PubMed  CAS  Google Scholar 

  40. •• Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L, et al. Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci U S A. 2009;106(38):16281–6. This article discusses the elevated expression of CD133 in primary non-small-cell lung cancer, and the implications of CD133 positivity on tumorigenesis in mouse models. CD133 positive cells are more tumorigenic, develop cisplatin resistance, and display higher expression of genes related to stemness, adhesion, motility, and drug efflux relative to CD 133 negative cells.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Templeton AK, Miyamoto S, Babu A, Munshi A, Ramesh R. Cancer stem cells: progress and challenges in lung cancer. Stem Cell Investig 2014; 1:9.

  42. Clark AG, Vignjevic DM. Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol. 2015;36:13–22.

    Article  PubMed  CAS  Google Scholar 

  43. Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147(5):992–1009.

    Article  PubMed  CAS  Google Scholar 

  44. Heerboth S, Housman G, Leary M, Longacre M, Byler S, Lapinska K, et al. EMT and tumor metastasis. Clin Transl Med. 2015;4:6.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Moreno-Bueno G, Cubillo E, Sarrio D, Peinado H, Rodriguez-Pinilla SM, Villa S, et al. Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for snail, slug, and E47 factors in epithelial-mesenchymal transition. Cancer Res. 2006;66(19):9543–56.

    Article  PubMed  CAS  Google Scholar 

  47. Pasquier J, Abu-Kaoud N, Al Thani H, Rafii A. Epithelial to mesenchymal transition in a clinical perspective. J Oncol. 2015;2015:792182.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sarkar A, Barui A, Sengupta S, Chatterjee J, Ghorai S, Mukherjee A. Epithelial mesenchymal transition in lung cancer cells: a quantitative analysis. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:5372–5.

    Google Scholar 

  49. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9(4):265–73.

    Article  PubMed  CAS  Google Scholar 

  50. Sung WJ, Park KS, Kwak SG, Hyun DS, Jang JS, Park KK. Epithelial-mesenchymal transition in patients of pulmonary adenocarcinoma: correlation with cancer stem cell markers and prognosis. Int J Clin Exp Pathol. 2015;8(8):8997–9009.

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Ye Z, Zhang X, Luo Y, Li S, Huang L, Li Z, et al. Prognostic values of vimentin expression and its clinicopathological significance in non-small cell lung cancer: a meta-analysis of observational studies with 4118 cases. PLoS One. 2016;11(9):e0163162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Wu Y, Zhou BP. New insights of epithelial-mesenchymal transition in cancer metastasis. Acta Biochim Biophys Sin Shanghai. 2008;40(7):643–50.

    Article  PubMed  CAS  Google Scholar 

  53. Sowa T, Menju T, Sonobe M, Nakanishi T, Shikuma K, Imamura N, et al. Association between epithelial-mesenchymal transition and cancer stemness and their effect on the prognosis of lung adenocarcinoma. Cancer Med. 2015;4(12):1853–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Roudi R, Korourian A, Shariftabrizi A, Madjd Z. Differential expression of cancer stem cell markers ALDH1 and CD133 in various lung cancer subtypes. Cancer Investig. 2015;33(7):294–302.

    Article  CAS  Google Scholar 

  55. Zhang X, Lou Y, Wang H, Zheng X, Dong Q, Sun J, et al. Wnt signaling regulates the stemness of lung cancer stem cells and its inhibitors exert anticancer effect on lung cancer SPC-A1 cells. Med Oncol. 2015;32(4):95.

    Article  PubMed  CAS  Google Scholar 

  56. Zhang X, Lou Y, Zheng X, Wang H, Sun J, Dong Q, et al. Wnt blockers inhibit the proliferation of lung cancer stem cells. Drug Des Devel Ther. 2015;9:2399–407.

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Fang L, Cai J, Chen B, Wu S, Li R, Xu X, et al. Aberrantly expressed miR-582-3p maintains lung cancer stem cell-like traits by activating Wnt/beta-catenin signalling. Nat Commun. 2015;6:8640.

    Article  PubMed  CAS  Google Scholar 

  58. Raz G, Allen KE, Kingsley C, Cherni I, Arora S, Watanabe A, et al. Hedgehog signaling pathway molecules and ALDH1A1 expression in early-stage non-small cell lung cancer. Lung Cancer. 2012;76(2):191–6.

    Article  PubMed  Google Scholar 

  59. Chen WJ, Ho CC, Chang YL, Chen HY, Lin CA, Ling TY, et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun. 2014;5:3472.

    Article  PubMed  CAS  Google Scholar 

  60. Tirino V, Camerlingo R, Franco R, Malanga D, La Rocca A, Viglietto G, et al. The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small-cell lung cancer. Eur J Cardiothorac Surg. 2009;36(3):446–53.

    Article  PubMed  Google Scholar 

  61. • Lee YS, Lee JW, Jang JW, Chi XZ, Kim JH, Li YH, et al. Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell. 2013;24(5):603–16. This article shows that Runx3 inactivation induces lung adenomas and accelerates KrasG12D-associated transformation and formation of lung adenocarcinoma

    Article  PubMed  CAS  Google Scholar 

  62. Lee KS, Lee YS, Lee JM, Ito K, Cinghu S, Kim JH, et al. Runx3 is required for the differentiation of lung epithelial cells and suppression of lung cancer. Oncogene. 2010;29(23):3349–61.

    Article  PubMed  CAS  Google Scholar 

  63. Li J, Kleeff J, Guweidhi A, Esposito I, Berberat PO, Giese T, et al. RUNX3 expression in primary and metastatic pancreatic cancer. J Clin Pathol. 2004;57(3):294–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Licchesi JD, Westra WH, Hooker CM, Machida EO, Baylin SB, Herman JG. Epigenetic alteration of Wnt pathway antagonists in progressive glandular neoplasia of the lung. Carcinogenesis. 2008;29(5):895–904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Tandon M, Gokul K, Ali SA, Chen Z, Lian J, Stein GS, et al. Runx2 mediates epigenetic silencing of the bone morphogenetic protein-3B (BMP-3B/GDF10) in lung cancer cells. Mol Cancer. 2012;11:27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Hino J, Takao M, Takeshita N, Konno Y, Nishizawa T, Matsuo H, et al. cDNA cloning and genomic structure of human bone morphogenetic protein-3B (BMP-3b). Biochem Biophys Res Commun. 1996;223(2):304–10.

    Article  PubMed  CAS  Google Scholar 

  67. Zhao R, Lawler AM, Lee SJ. Characterization of GDF-10 expression patterns and null mice. Dev Biol. 1999;212(1):68–79.

    Article  PubMed  CAS  Google Scholar 

  68. Dai Z, Popkie AP, Zhu WG, Timmers CD, Raval A, Tannehill-Gregg S, et al. Bone morphogenetic protein 3B silencing in non-small-cell lung cancer. Oncogene. 2004;23(20):3521–9.

    Article  PubMed  CAS  Google Scholar 

  69. • Singh S, Trevino J, Bora-Singhal N, Coppola D, Haura E, Altiok S, et al. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer. Mol Cancer. 2012;11:73. This article demonstrates that the side population of NSCLCs expresses high levels of Sox2 and that Sox2 is a novel target of EGFR-Src-Akt signaling in NSCLCs

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Karachaliou N, Rosell R, Viteri S. The role of SOX2 in small cell lung cancer, lung adenocarcinoma and squamous cell carcinoma of the lung. Transl Lung Cancer Res. 2013;2(3):172–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Xiang R, Liao D, Cheng T, Zhou H, Shi Q, Chuang TS, et al. Downregulation of transcription factor SOX2 in cancer stem cells suppresses growth and metastasis of lung cancer. Br J Cancer. 2011;104(9):1410–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitesh Pratap.

Ethics declarations

Conflict of Interest

Ahmad H. Othman, Manish Tandon, Imad Tarhoni, Jeffrey A. Borgia, and Jitesh Pratap each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Molecular Biotechnology of Adult Stem Cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othman, A.H., Tandon, M., Tarhoni, I. et al. Lung Cancer Stem Cells: Insights into Characterization and Regulatory Mechanisms. Curr Mol Bio Rep 3, 247–253 (2017). https://doi.org/10.1007/s40610-017-0080-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-017-0080-8

Keywords

Navigation