Skip to main content
Log in

A Polyhedral Homotopy Algorithm for Real Zeros

  • Research Exposition
  • Published:
Arnold Mathematical Journal Aims and scope Submit manuscript

Abstract

We design a homotopy continuation algorithm, that is based on Viro’s patchworking method, for finding real zeros of sparse polynomial systems. The algorithm is targeted for polynomial systems with coefficients that satisfy certain concavity conditions, it tracks optimal number of solution paths, and it operates entirely over the reals. In more technical terms, we design an algorithm that correctly counts and finds the real zeros of polynomial systems that are located in the unbounded components of the complement of the underlying A-discriminant amoeba. We provide a detailed exposition of connections between Viro’s patchworking method, convex geometry of A-discriminant amoeba complements, and computational real algebraic geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Carried out on a MacBook Pro, Intel i5-5257U, 2.70GHz, 8GB RAM.

References

  1. Allgower, E.L., Georg, K.: Numerical Continuation Methods: An Introduction, vol. 13. Springer Science & Business Media, New York (2012)

    MATH  Google Scholar 

  2. Bürgisser, P., Cucker, F.: Condition: The Geometry of Numerical Algorithms, vol. 349. Springer Science & Business Media, New York (2013)

    MATH  Google Scholar 

  3. Bernstein, D.: The number of roots of a system of equations. Funct. Anal. Appl. 9, 183–185 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bihan, F.: Irrational mixed decomposition and sharp fewnomial bounds for tropical polynomial systems. Discrete Comput. Geometry 55(4), 907–933 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bihan, F.: Correction to ’Irrational mixed decomposition and sharp fewnomial bounds for tropical polynomial systems. (2020) (to appear)

  6. Bates, D.J., Sottile, F.: Khovanskii-rolle continuation for real solutions. Found. Comput. Math. 11(5), 563 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bihan, F., Sottile, F.: Fewnomial bounds for completely mixed polynomial systems. Adv. Geom. 11(3), 541–556 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Breiding, P., Timme, S.: Homotopycontinuation.jl: A Package for Homotopy Continuation in julia, Mathematical Software - ICMS: Lecture Notes in Computer Science, vol. 10931, p. 2018. Springer, Cham (2018)

    MATH  Google Scholar 

  9. Canny, J.F., Emiris, I.Z.: A subdivision-based algorithm for the sparse resultant. J. ACM (JACM) 47(3), 417–451 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, T., Lee, T.-L., Li, T.-Y.: Hom4ps-3: A parallel numerical solver for systems of polynomial equations based on polyhedral homotopy continuation methods, in Mathematical Software—ICMS 2014—4th International Congress, Seoul, South Korea, August 5-9, 2014. Proceedings (Hoon Hong and Chee Yap, eds.), Lecture Notes in Computer Science, vol. 8592, Springer, pp. 183–190 (2014)

  11. De Loera, J., Rambau, J., Santos, F.: Triangulations Structures for Algorithms and Applications. Springer, New York (2010)

    MATH  Google Scholar 

  12. Dickenstein, A., Rojas, J.M., Rusek, K., Shih, J.: Extremal real algebraic geometry and \(\backslash \) mathcala-discriminants. Moscow Math. J. 7(3), 425–452 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ergür, A.A., Paouris, G., Rojas, J.M.: Probabilistic condition number estimates for real polynomial systems I: a broader family of distributions. Foundations Comput. Math. 19, 1–27 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Ergür, A., Paouris, G., J Rojas: Smoothed analysis for the condition number of structured real polynomial systems. Math. Comput. 90(331), 2161–2184 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Esterov, A.: Newton polyhedra of discriminants of projections. Discrete Comput. Geometry 44(1), 96–148 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gelfand, I.M., Kapranov, M., Zelevinsky, A.: Discriminants, Resultants, and Multidimensional Determinants. Springer Science & Business Media, New York (2008)

    MATH  Google Scholar 

  17. Huber, B., Rambau, J., Santos, F.: The cayley trick, lifting subdivisions and the bohne-dress theorem on zonotopal tilings. J. Eur. Math. Soc. 2(2), 179–198 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial systems. Math. Comput. 64(212), 1541–1555 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Itenberg, I., Mikhalkin, G., Shustin, E.I.: Tropical Algebraic Geometry, vol. 35. Springer Science & Business Media, New York (2009)

    Book  MATH  Google Scholar 

  20. Itenberg, I., Roy, M.-F.: Multivariate descartes’ rule. Beitrage Zur Algebra und Geometrie 37(2), 337–346 (1996)

    MathSciNet  MATH  Google Scholar 

  21. Anders Nedergaard Jensen: An Implementation of Exact Mixed. International Congress on Mathematical Software, vol. computation, pp. 198–205. Springer, New York (2016)

    MATH  Google Scholar 

  22. Jensen, A.N.: Tropical Homotopy Continuation. arXiv preprint arXiv:1601.02818 (2016)

  23. Joshi, B., Shiu, A.: Which small reaction networks are multistationary? SIAM J. Appl. Dyn. Syst. 16(2), 802–833 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Joswig, M., Vater, P.: Real Tropical Hyperfaces by Patchworking in Polymake. International Congress on Mathematical Software, pp. 202–211. Springer, New York (2020)

    MATH  Google Scholar 

  25. Kapranov, M.M.: A characterization ofa-discriminantal hypersurfaces in terms of the logarithmic gauss map. Math. Ann. 290(1), 277–285 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kannan, R., Bachem, A.: Polynomial algorithms for computing the smith and hermite normal forms of an integer matrix. siam J. Comput. 8(4), 499–507 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Khovanskii, A.G.: Fewnomials, vol. 88. American Mathematical Society, New York (1991)

    MATH  Google Scholar 

  28. Koiran, P.: Shallow circuits with high-powered inputs, (2010)

  29. Kushnirenko, A.: Letter to Frank Sottile, https://www.math.tamu.edu/~sottile/research/pdf/Kushnirenko.pdf

  30. Li, T.-Y., Wang, X.: On multivariate descartes’ rule-a counterexample. Beiträge Algebra Geom. 39(1), 1–5 (1998)

    MathSciNet  MATH  Google Scholar 

  31. Malajovich, G.: Complexity of sparse polynomial solving: homotopy on toric varieties and the condition metric. Found. Comput. Math. 19, 1–53 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Malajovich, G.: Computing mixed volume and all mixed cells in quermassintegral time. Found. Comput. Math. 17(5), 1293–1334 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Malajovich, G.: Pss5—polynomial system solver, (2019) https://sourceforge.net/projects/pss5/

  34. Malajovich, G.: Complexity of sparse polynomial solving 2: Renormalization, (2020)

  35. Mikhalkin, G.: Amoebas of algebraic varieties and tropical geometry. In: Donaldson, S.K., Eliashberg, Y., Gromov, M. (eds.) Different Faces of Geometry, pp. 257–300. Kluwer, New York (2004)

    Chapter  MATH  Google Scholar 

  36. Malajovich, G., Rojas, J.M.: High probability analysis of the condition number of sparse polynomial systems. Theoret. Comput. Sci. 315(2–3), 525–555 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mikhalkin, G., Rau, J.: Tropical geometry, vol. 8, MPI for Mathematics, (2009)

  38. Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry. American Mathematical Society, Providence (2015)

    Book  MATH  Google Scholar 

  39. O’Neill, C., Kwaakwah, E.O., de Wolff, T.: Viro.sage, version 0.4(b), https://cdoneill.sdsu.edu/viro/, (2018)

  40. Paouris, G., Phillipson, K., Rojas, J. M.: A faster solution to smale’s 17th problem i: Real binomial systems, in Proceedings of the 2019 on International Symposium on Symbolic and Algebraic Computation, pp. 323–330 (2019)

  41. Passare, M., Sadykov, T., Tsikh, A.: Singularities of hypergeometric functions in several variables. Comp. Math. 141, 787–810 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Passare, M., Tsikh, A.: Amoebas: their spines and their contours. In: Idempotent Mathematics and Mathematical Physics, Contemp. Math., vol. 377, pp. 275–288. American Mathematical Society, Providence (2005)

    Chapter  MATH  Google Scholar 

  43. Sturmfels, B.: On the newton polytope of the resultant. J. Algebraic Combin. 3(2), 207–236 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sturmfels, B.: Viro’s theorem for complete intersections. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 21(3), 377–386 (1994)

    MathSciNet  MATH  Google Scholar 

  45. Sturmfels, B.: Polynomial equations and convex polytopes. Am. Math. Mon. 105(10), 907–922 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  46. Verschelde, J.: Algorithm 795: Phcpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276 (1999)

    Article  MATH  Google Scholar 

  47. Viro, O.: From the sixteenth Hilbert problem to tropical geometry. Jpn. J. Math. 3(2), 185–214 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Lint, V., Hendricus, J.: Coding Theory, vol. 201. Springer, New York (1971)

    Google Scholar 

  49. Ziegler, G.M.: Lectures on Polytopes, vol. 152. Springer Science & Business Media, New York (2012)

    MATH  Google Scholar 

Download references

Acknowledgements

We cordially thank Sascha Timme for implementing a preliminary version of the algorithm developed in this article in the software HomotopyContinuation.jl, and for his help with developing Example 4.1. We thank Matías Bender, Paul Breiding, Felipe Cucker, Mario Kummer, Gregorio Malajovich, Jeff Sommars, and Josue Tonelli-Cueto for useful discussions. The first author thanks J. Maurice Rojas for introducing him to the beautiful book [16]. First author is supported by NSF CCF 2110075, and the second author is supported by the DFG grant WO 2206/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alperen A. Ergür.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ergür, A.A., Wolff, T.d. A Polyhedral Homotopy Algorithm for Real Zeros. Arnold Math J. 9, 305–338 (2023). https://doi.org/10.1007/s40598-022-00219-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40598-022-00219-w

Keywords

Mathematics Subject Classification

Navigation