Skip to main content
Log in

Irrational Mixed Decomposition and Sharp Fewnomial Bounds for Tropical Polynomial Systems

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Given convex polytopes \(P_1,\ldots ,P_r \subset \mathbb {R}^n\) and finite subsets \(\mathcal {W}_I\) of the Minkowski sums \(P_I=\sum _{i \in I} P_i\), we consider the quantity \(N(\mathbf {W})=\sum _{I \subset \mathbf{[}r \mathbf{]} } {(-1)}^{r-|I|} \big | \mathcal {W}_I \big |\). If \(\mathcal {W}_I=\mathbb {Z}^n \cap P_I\) and \(P_1,\ldots ,P_n\) are lattice polytopes in \(\mathbb {R}^n\), then \(N(\mathbf {W})\) is the classical mixed volume of \(P_1,\ldots ,P_n\) giving the number of complex solutions of a general complex polynomial system with Newton polytopes \(P_1,\ldots ,P_n\). We develop a technique that we call irrational mixed decomposition which allows us to estimate \(N(\mathbf {W})\) under some assumptions on the family \(\mathbf {W}=(\mathcal {W}_I)\). In particular, we are able to show the nonnegativity of \(N(\mathbf {W})\) in some important cases. A special attention is paid to the family \(\mathbf {W}=(\mathcal {W}_I)\) defined by \(\mathcal {W}_I=\sum _{i \in I} \mathcal {W}_i\), where \(\mathcal {W}_1,\ldots ,\mathcal {W}_r\) are finite subsets of \(P_1,\ldots ,P_r\). The associated quantity \(N(\mathbf {W})\) is called discrete mixed volume of \(\mathcal {W}_1,\ldots ,\mathcal {W}_r\). Using our irrational mixed decomposition technique, we show that for \(r=n\) the discrete mixed volume is an upper bound for the number of nondegenerate solutions of a tropical polynomial system with supports \(\mathcal {W}_1,\ldots ,\mathcal {W}_n \subset \mathbb {R}^n\). We also prove that the discrete mixed volume associated with \(\mathcal {W}_1,\ldots ,\mathcal {W}_r\) is bounded from above by the Kouchnirenko number \(\prod _{i=1}^r (|\mathcal {W}_i|-1)\). For \(r=n\) this number was proposed as a bound for the number of nondegenerate positive solutions of any real polynomial system with supports \(\mathcal {W}_1,\ldots ,\mathcal {W}_n \subset \mathbb {R}^n\). This conjecture was disproved, but our result show that the Kouchnirenko number is a sharp bound for the number of nondegenerate positive solutions of real polynomial systems constructed by means of the combinatorial patchworking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Beck, M., Nill, B., Reznick, B., Savage, C., Soprunov, I., Xu, Z.: Let me tell you my favorite lattice-point problem. Integer Points in Polyhedra-Geometry, Number Theory, Representation Theory, Algebra, Optimization, Statistics. Contemporary Mathematics, vol. 452, pp. 179–187. American Mathematical Society, Providence, RI (2008)

    Chapter  Google Scholar 

  2. Beck, M., Sottile, F.: Irrational proofs for three theorems of Stanley. Eur. J. Combin. 28(1), 403–409 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernstein, D.N.: The number of roots of a system of equations. Funct. Anal. Appl. 9, 183–185 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertrand, B., Bihan, F.: Intersection Multiplicity Numbers Between Tropical Hypersurfaces. Algebraic and Combinatorial Aspects of Tropical Geometry. Contemporary Mathematics, vol. 589, pp. 1–19. American Mathematical Society, Providence, RI (2013)

    Book  MATH  Google Scholar 

  5. Bihan, F.: Viro method for the construction of real complete intersections. Adv. Math. 169(2), 177–186 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bihan, F., Sottile, F.: New fewnomial upper bounds from Gale dual polynomial systems. Mosc. Math. J. 7(3), 387–407 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Bogart, T., Jensen, A.N., Speyer, D., Sturmfels, B., Thomas, R.R.: Computing tropical varieties. J. Symb. Comput. 422(1–2), 54–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics, vol. 185, 2nd edn. Springer, New York (2005)

    MATH  Google Scholar 

  9. Gathmann, A.: Tropical algebraic geometry. Jahresber. Dtsch. Math.-Ver. 108(1), 3–32 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Haas, B.: A simple counter-example to Kushnirenko’s conjecture. Beitr. Algebra Geom. 43(1), 1–8 (2002)

    MathSciNet  Google Scholar 

  11. Itenberg, I., Mikhalkin, G., Shustin, E.: Lecture Notes of the Oberwolfach Seminar. Oberwolfach Seminars Series, vol. 35. Birkhauser, Basel (2007)

    Google Scholar 

  12. Itenberg, I., Roy, M.-F.: Multivariate Descartes’ Rule. Beitr. Algebra Geom. 37(2), 337–346 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Khovanskii, A.: Newton polyhedra and the genus of complete intersections. Funktsional. Anal. i Prilozhen. 12(1), 51–61 (1978)

    Article  MathSciNet  Google Scholar 

  14. Khovanskii, A.: Fewnomials. Translations of Mathematical Monographs, vol. 88. AMS, Providence, RI (1991)

    Google Scholar 

  15. Li, T.-Y., Rojas, J.M., Wang, X.: Counting real connected components of trinomial curve intersections and \(m\)-nomial hypersurfaces. Discrete Comput. Geom. 30(3), 379–414 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, T.-Y., Wang, X.: On multivariate Descartes’ Rule—a counter-example. Beitr. Algebra Geom. 39(1), 1–5 (1998)

    Google Scholar 

  17. Mikhalkin, G.: Tropical geometry and its applications. In: Proceedings of the International Congress of Mathematicians, Madrid, pp. 827–852 (2006)

  18. Nill, B.: The mixed degree of families of lattice polytopes (2016, in preparation)

  19. Phillipson, K., Rojas, J.M.: Fewnomial systems with many roots, and an adelic tau conjecture. In: Proceedings of Bellairs workshop on tropical and non-Archimedean geometry (May 6–13, 2011, Barbados). Contemporary Mathematics, vol. 605, pp. 45–71. AMS Press (2013)

  20. Richter-Gebert, J., Sturmfels, B., Theobald, T.: First Steps in Tropical Geometry, Idempotent Mathematics and Mathematical Physics. Contemporary Mathematics, vol. 377, pp. 289–317. American Mathematical Society, Providence, RI (2005)

    Book  MATH  Google Scholar 

  21. Steffens, R., Theobald, T.: Combinatorics and genus of tropical intersections and Ehrhart theory. SIAM J. Discrete Math. 24(1), 17–32 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sturmfels, B.: Viro’s theorem for complete intersections. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21(3), 377–386 (1994)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Benjamin Nill for his interest in this work and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Bihan.

Additional information

Editor in Charge: Günter M. Ziegler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bihan, F. Irrational Mixed Decomposition and Sharp Fewnomial Bounds for Tropical Polynomial Systems. Discrete Comput Geom 55, 907–933 (2016). https://doi.org/10.1007/s00454-016-9780-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-016-9780-8

Keywords

Navigation