Skip to main content
Log in

On the zeros of the Pearcey integral and a Rayleigh-type equation

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

In this work we find a sequence of functions \(f_n\) at which the integral

$$\begin{aligned} v(t,x)=\int _{-\infty }^{\infty }e^{i\lambda x-\lambda ^2t/2-\lambda ^4/4}\mathrm{d}\lambda \end{aligned}$$
(1)

is identically zero for all \(t\ge 0\), that is

$$\begin{aligned} v(t,f_n(t))=0\qquad \forall t\ge 0. \end{aligned}$$

The function v, after proper change of variables and rotation of the path of integration, is known as the Pearcey integral or Pearcey function, indistinctly. We also show that each \(f_n\) is expressed in terms of a second order non-linear ODE, which turns out to be of the Rayleigh-type. Furthermore, the initial conditions which uniquely determine each \(f_n\), depend on the zeros of an Lévy stable function of order 4 defined as

$$\begin{aligned} \phi (x)=\int _{-\infty }^{\infty }e^{i\lambda x-\lambda ^4/4}\mathrm{d}\lambda . \end{aligned}$$

As a byproduct of these facts, we develop a methodology to find a class of functions which solve the moving boundary problem of the heat equation. To this end, we make use of generalized Airy functions, which in some particular cases fall within the category of functions with infinitely many real zeros, studied by Pólya.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berry, M.V., Klein, S.: Colored diffraction catastrophes. Proc. Natl. Acad. Sci. USA 93, 2614–2619 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertola, M., Cafasso, M.: The gap probabilities of the tacnode, Pearcey and Airy point processes, their mutual relationship and evaluation. Random Matrices Theory Appl. 2(2), Art. no. 1350003 (2013)

  3. Björk, T.: Arbitrage Theory in Continuous Time. Oxford, New york (2009)

  4. Górska, K., Horzela, A., Penson, K.A. and Dattoli, G.: The higher-order heat-type equations via signed Lévy stable and generalized Airy functions. J. Phys. A: Math. Theor. 46(42), Art. no. 425001 (2013)

  5. Davis, M.H.A. and Pistorius, M.R.: Quantification of counterparty risk via Bessel bridges. Working paper (2010)

  6. De Lillo, S., Fokas, A.S.: The Dirichlet-to-Neumann map for the heat equation on a moving boundary. Inverse Probl. 23, 1699–1710 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hernandez-del-Valle, G.: On hitting times, Bessel bridges and Schrödinger’s equation. Bernoulli 19(5A), 1559–1575 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hernandez-del-Valle, G.: On a new class of barrier options, Documentos de Investigación Banco de México. No. 2014–23 (2014)

  9. Kaminski, D., Paris, R.B.: On the zeros of the Pearcey integral. J. Comput. Appl. Math. 107, 31–52 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Karatzas, I., Shreve, S.E.: Brownian motion and Stochastic Calculus, 2nd edn. Graduate Texts in Mathematics, vol. 113. Springer, New York (1991)

  11. Martin-Löf, A.: The final size of a nearly critical epidemic, and the first passage time of a Wiener process to a parabolic barrier. J. Appl. Probab. 35, 671–682 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Paris, R.B.: The asymptotic behaviour of Pearcey’s integral for complex variables. Proc. R. Soc. London Ser. A: Math 432, 391–426 (1991)

  13. Paris, R.B.: A generalization of Pearcey’s integral, SIAM. J. Math. Anal. 25, 630–645 (1994)

    MathSciNet  MATH  Google Scholar 

  14. Pearcey, T.: The structure of an electromagnetic field in the neighbourhood of a caustic. Philos. Mag. 37, 311–317 (1946)

    Article  MathSciNet  Google Scholar 

  15. Pólya, G.: Über trigonometrische integrale mit nur reellen nullstellen. J. Reine Angew. Math. 158, 6–18 (1927)

    MathSciNet  MATH  Google Scholar 

  16. Rosenbloom, P.C., Widder, D.V.: Expansions in terms of heat polynomials and associated function. Trans. Amer. Math. Soc. 92, 220–266 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  17. Senouf, D.: Asymptotic and numerical approximations of the zeros of Fourier integrals. SIAM J. Math. Anal. 27(4), 1102–1128 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Strutt, J.W.: Theory of Sound, vol. 1. Dover Publications, New York. 1877. Re-issued (1945)

  19. Tracy, C.A., Widom, H.: The Pearcey process. Commun. Math. Phys. 263, 381–400 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vallée, O., Soares, M.: Airy Functions and Applications to Physics. Imperial College Press, London (2004)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Hernández-del-Valle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-del-Valle, G. On the zeros of the Pearcey integral and a Rayleigh-type equation. Bol. Soc. Mat. Mex. 24, 203–217 (2018). https://doi.org/10.1007/s40590-016-0142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40590-016-0142-6

Keywords

Mathematics Subject Classification

Navigation