Skip to main content

Advanced Methods for Detection of Foodborne Pathogens

  • Chapter
  • First Online:
Advanced Techniques in Diagnostic Microbiology

Abstract

Recent national attention has been focused on bacterial foodborne outbreaks involving retail meats, fresh vegetables, peanut butter, and cheese, highlighting the importance of the methodologies used to identify, characterize, and track these strains. Traditional methods, including microbiological isolation, biochemical characterization, and serotyping, are validated and internationally accepted; however, these methods are often laborious, time consuming, and lack detailed genetic information which may be necessary to distinguish foodborne pathogen outbreaks from unrelated strains. Advanced technologies, such as whole genome sequencing and culture-independent diagnostic technologies (CIDTs) including metagenomics, are becoming more regularly used for surveillance of the food supply by national foodborne pathogen surveillance programs including the National Antimicrobial Resistance Monitoring System (NARMS) in the USA. Whole genome sequencing schemes are being validated by state and federal labs nationwide to replace traditional methods such as serotyping, pulsed-field gel electrophoresis, and antimicrobial susceptibility typing as this method is officially becoming the gold standard for foodborne pathogen outbreak detection. New bioinformatics tools are being designed to accurately predict antimicrobial resistance, serotype, sequence type, and evolutionary relatedness. While new and advanced molecular techniques are constantly evolving to become more complex and discriminatory, epidemiological information remains essential to meaningfully characterize outbreaks to preserve human health and the safety of our food.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.fda.gov/Food/FoodScienceResearch/WholeGenomeSequencingProgramWGS/ucm403550.htm

References

  1. Harbottle H, Pendrak M. Advanced methods for detection of foodborne pathogens. In: Tang YW, Stratton C, editors. Advanced techniques in diagnostic microbiology. Boston: Springer; 2013.

    Google Scholar 

  2. Scallan E, Hoekstra R, Angulo F, et al. Foodborne illness acquired in the United States — major pathogens. Emerg Infect Dis. 2011;17:7–15.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Marder EP, Cieslak PR, Cronquist AB, et al. Incidence and trends of infections with pathogens transmitted commonly through food and the effect of increasing use of culture-independent diagnostic tests on surveillance — foodborne diseases active surveillance network, 10 U.S. Sites, 2013–2016. MMWR Morb Mortal Wkly Rep. 2017;66:397–403.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Centers for Disease Control and Prevention (CDC). Antibiotic resistance threats in the United States, 2013. Atlanta: CDC; 2013. Available from: http://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf.

  5. U.S. Food and Drug Administration, 2011. Bacteriological Analytical Manual (BAM). Chapter 5. Salmonella. http://www.fda.gov/Food/ScienceResearch/LaboratoryMethods/BacteriologicalAnalyticalManualBAM/ucm070149.htm.

  6. Bopp CA, Brenner FW, Fields PI, Wells JG, Stockbine NA, editors. Manual of clinical microbiology, vol. Vol. 1. Washington, DC: ASM Press; 2003.

    Google Scholar 

  7. Kim S, Frye JG, Hu J, et al. Multiplex PCR-based method for identification of common clinical serotypes of Salmonella enterica subsp. enterica. J Clin Microbiol. 2006;44(10):3608–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Leader BT, Frye JG, Hu J, et al. High-throughput molecular determination of Salmonella enterica serovars by use of multiplex PCR and capillary electrophoresis analysis. J Clin Microbiol. 2009;47(5):1290–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rajtak U, Leonard N, Bolton D, Fanning S. A real-time multiplex SYBR Green I polymerase chain reaction assay for rapid screening of Salmonella serotypes prevalent in the European Union. Foodborne Pathog Dis. 2011;8(7):769–80.

    Article  CAS  PubMed  Google Scholar 

  10. Fitzgerald C, Collins M, van Duyne S, et al. Multiplex, bead-based suspension array for molecular determination of common Salmonella serogroups. J Clin Microbiol. 2007;45:3323–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McQuiston JR, Waters RJ, Dinsmore BA, et al. Molecular determination of H antigens of Salmonella by use of a microsphere-based liquid array. J Clin Microbiol. 2011;49:565–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elder JR, Bugarel M, den Bakker HC, et al. Interrogation of single nucleotide polymorphisms in gnd provides a novel method for molecular serogrouping of clinically important Shiga toxin producing Escherichia coli (STEC) targeted by regulation in the United States, including the “big six” non-O157 STEC and STEC O157. J Microbiol Methods. 2016;129:85–93.

    Article  CAS  PubMed  Google Scholar 

  13. Yoshida C, Lingohr EJ, Trognitz F, et al. Multi-laboratory evaluation of the rapid genoserotyping array (SGSA) for the identification of Salmonella serovars. Diagn Microbiol Infect Dis. 2014;80(3):185–90.

    Article  CAS  PubMed  Google Scholar 

  14. Patel IR, Gangiredla J, Lacher DW, et al. FDA Escherichia coli identification (FDA-ECID) microarray: a Pangenome molecular toolbox for serotyping, virulence profiling, molecular epidemiology, and phylogeny. Appl Environ Microbiol. 2016;82(11):3384–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang S, Yin Y, Jones MB, et al. Salmonella serotype determination utilizing high-throughput genome sequencing data. Clin Microbiol. 2015;53(5):1685–92.

    Article  CAS  Google Scholar 

  16. Ashton PM, Nair S, Peters TM, et al. Identification of Salmonella for public health surveillance using whole genome sequencing. PeerJ. 2016;4:e1752.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Achtman M, Wain J, Weill FX, et al. Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Pathog. 2012;8(6):e1002776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yoshida CE, Kruczkiewicz P, Laing CR, et al. The Salmonella in silico typing resource (SISTR): an open web-accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. PLoS One. 2016;11(1):e0147101.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yachison CA, Yoshida C, Robertson J, et al. The validation and implications of using whole genome sequencing as a replacement for traditional serotyping for a National Salmonella Reference Laboratory. Front Microbiol. 2017;8:1044.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nyman AK, Ågren EC, Bergström K, et al. Evaluation of the specificity of three enzyme-linked immunosorbent assays for detection of antibodies against Salmonella in bovine bulk milk. Acta Vet Scand. 2013;55:5.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Karoonuthaisiri N, Charlermroj R, Uawisetwathana U, et al. Development of antibody array for simultaneous detection of foodborne pathogens. Biosens Bioelectron. 2009;24:1641–8.

    Article  CAS  PubMed  Google Scholar 

  22. Clotilde LM, Bernard C 4th, Hartman GL, et al. Microbead-based immunoassay for simultaneous detection of Shiga toxins and isolation of Escherichia coli O157 in foods. J Food Prot. 2011;74(3):373–9.

    Article  PubMed  Google Scholar 

  23. Hahn J, Kim E, You YS, et al. A switchable linker-based immunoassay for ultrasensitive visible detection of Salmonella in tomatoes. J Food Sci doi. 2017. https://doi.org/10.1111/1750-3841.13861. [Epub ahead of print].

    Article  CAS  PubMed  Google Scholar 

  24. Cho IH, Irudayaraj J. In-situ immuno-gold nanoparticle network ELISA biosensors for pathogen detection. Int J Food Microbiol. 2013;164(1):70–5.

    Article  CAS  PubMed  Google Scholar 

  25. Anany H, Brovko L, El Dougdoug NK, et al. Print to detect: a rapid and ultrasensitive phage-based dipstick assay for foodborne pathogens. Anal Bioanal Chem. 2017;410(4):1217–30. [Epub ahead of print].

    Article  PubMed  Google Scholar 

  26. Junillon T, Vimont A, Mosticone D, et al. Simplified detection of food-borne pathogens: an in situ high affinity capture and staining concept. J Microbiol Methods. 2012;91(3):501–5.

    Article  PubMed  Google Scholar 

  27. Mangal M, Bansal S, Sharma SK, et al. Molecular detection of foodborne pathogens: a rapid and accurate answer to food safety. Crit Rev Food Sci Nutr. 2016;56(9):1568–84.

    Article  CAS  PubMed  Google Scholar 

  28. Gebreyes WA, Thakur S, Morrow WE. Campylobacter coli: prevalence and antimicrobial resistance in antimicrobial-free (ABF) swine production systems. J Antimicrob Chemother. 2005;56(4):765–8.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao S, Young SR, Tong E, et al. Antimicrobial resistance of Campylobacter isolates from retail meat in the United States between 2002 and 2007. Appl Environ Microbiol. 2010;76(24):7949–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sangal V, Harbottle H, Mazzoni CJ, et al. Evolution and population structure of Salmonella enterica serovar Newport. J Bact. 2010;192(24):6465–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harbottle H, McDermott PF, White DG, et al. Comparison of multi-locus sequence typing with pulsed-field gel electrophoresis and antimicrobial susceptibility profiling of Salmonella enterica serotype Newport isolates. J Clin Micro. 2006;44(7):2449–57.

    Article  CAS  Google Scholar 

  32. Thakur S, White DG, Kroft B, et al. Genotyping of Campylobacter coli isolated from humans and retail meats using multi locus sequence typing and pulsed field gel electrophoresis. J App Micro. 2009;106(5):1722–33.

    Article  CAS  Google Scholar 

  33. Junge B, Berghof-Jager K. Roche/BIOTECON Diagnostics LightCycler foodproof L monocytogenes Detection Kit in Combination with ShortPrep foodproof II Kit. J AOAC Int. 2006;89(2):374–98.

    CAS  PubMed  Google Scholar 

  34. Lindhardt C, Schonenbrucher H, Slaghuis J, Bubert A, et al. Foodproof® Salmonella detection kit. J AOAC Int. 2009;92(6):1876–84.

    CAS  PubMed  Google Scholar 

  35. Fukushima H, Katsube K, Tsunomori Y et al (2009) Kishi R, Atsuta J, Akiba Y. Comprehensive and rapid real-time PCR analysis of 21 foodborne outbreaks. Int J Microbiol. 2009, https://doi.org/10.1155/2009/917623

    Article  Google Scholar 

  36. Zeng D, Chen Z, Jiang Y. Advances and challenges in viability detection of foodborne pathogens. Front Microbiol. 2016;7:1833.

    PubMed  PubMed Central  Google Scholar 

  37. Miller ND, Davidson PM, D’Souza DH. Real-time reverse-transcriptase PCR for Salmonella Typhimurium detection from lettuce and tomatoes LWT. Food Sci Technol. 2011;44:1088–97.

    CAS  Google Scholar 

  38. Zhang G, Brown EW, González-Escalona N. Comparison of real-time PCR, reverse transcriptase real-time PCR, loop-mediated isothermal amplification, and the FDA conventional microbiological method for the detection of Salmonella spp. in produce. Appl Environ Microbiol. 2011;77(18):6495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bruant G, Maynard C, Bekal S, et al. Development and validation of an oligonucleotide microarray for detection of multiple virulence and antimicrobial resistance genes in Escherichia coli. Appl Environ Microbiol. 2006;72(5):3780–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cooke FJ, Brown DJ, Fookes M, et al. Characterization of the genomes of a diverse collection of Salmonella enterica serovar Typhimurium definitive phage type 104. J Bacteriol. 2008;190(24):8155–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dorrell N, Mangan JA, Laing KG, et al. Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res. 2001;11(10):1706–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kostic T, Weilharter A, Rubino S, et al. A microbial diagnostic microarray technique for the sensitive detection and identification of pathogenic bacteria in a background of nonpathogens. Anal Biochem. 2007;360(2):244–54.

    Article  CAS  PubMed  Google Scholar 

  43. Batchelor M, Hopkins KL, Liebana E, et al. Development of a miniaturised microarray-based assay for the rapid identification of antimicrobial resistance genes in Gram-negative bacteria. Int J Antimicrob Agents. 2008;31(5):440–51.

    Article  CAS  PubMed  Google Scholar 

  44. Chen S, Zhao S, McDermott PF, et al. A DNA microarray for identification of virulence and antimicrobial resistance genes in Salmonella serovars and Escherichia coli. Mol Cell Probes. 2005;19(3):195–201.

    Article  CAS  PubMed  Google Scholar 

  45. Frye JG, Jesse T, Long F, et al. DNA microarray detection of antimicrobial resistance genes in diverse bacteria. Int J Antimicrob Agents. 2006;27(2):138–51.

    Article  CAS  PubMed  Google Scholar 

  46. Porwollik S, Boyd EF, Choy C, et al. Characterization of Salmonella enterica subspecies I genovars by use of microarrays. J Bacteriol. 2004;186(17):5883–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jackson SA, Patel IR, Barnaba T. Investigating the global genomic diversity of Escherichia coli using a multi-genome DNA microarray platform with novel gene prediction strategies. BMC Genomics. 2011;12:349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Carleton HA, Gerner-Smidt P. Whole-genome sequencing is taking over foodborne disease surveillance. Microbe. 2016;11:7.

    Google Scholar 

  49. Swaminathan B, Barrett TJ, Hunter SB, et al. PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg Infect Dis. 2001;7(3):382–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Boxrud D, Monson T, Stiles T, et al. The role, challenges, and support of pulsenet laboratories in detecting foodborne disease outbreaks. Public Health Rep. 2010;125(Suppl 2):57–62.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ribot EM, Hise KB. Future challenges for tracking foodborne diseases: PulseNet, a 20-year-old US surveillance system for foodborne diseases, is expanding both globally and technologically. EMBO Rep. 2016;17(11):1499–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. FDA. National Antimicrobial Resistance Monitoring System – Enteric Bacteria (NARMS): 2009 Retail Meat Report. Rockville, MD: U.S. Department of Health and Human Services, Food and Drug Administration, 2011.

    Google Scholar 

  53. BC Integrated Surveillance Epidemiology Sub-Group. BC Integrated Salmonella Surveillance Annual Report 2010. May 2010.

    Google Scholar 

  54. Pallen MJ, Loman NJ, Penn CW. High-throughput sequencing and clinical microbiology: progress, opportunities and challenges. Curr Opin Microbiol. 2010;13(5):625–31.

    Article  CAS  PubMed  Google Scholar 

  55. Jackson BR, Tarr C, Strain E, et al. Implementation of Nationwide real-time whole-genome sequencing to enhance Listeriosis outbreak detection and investigation. Clin Infect Dis. 2016;63(3):380–6.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chen Y, Luo Y, Curry P, et al. Assessing the genome level diversity of Listeria monocytogenes from contaminated ice cream and environmental samples linked to a listeriosis outbreak in the United States. PLoS One. 2017;12(2):e0171389.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chen Y, Luo Y, Carleton H, et al. Whole genome and core genome multilocus sequence typing and single nucleotide polymorphism analyses of Listeria monocytogenes isolates associated with an outbreak linked to cheese, United States, 2013. Appl Environ Microbiol. 2017;83:e00633–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Allard MW, Strain E, Melka D, et al. Practical value of food pathogen traceability through building a whole-genome sequencing network and database. J Clin Microbiol. 2016;54(8):1975–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. den Bakker HC, Allard MW, Bopp D, et al. Rapid whole-genome sequencing for surveillance of Salmonella enterica Serovar Enteritidis. Emerg Infect Dis. 2014;8:1306–14.

    Article  Google Scholar 

  60. Taylor AJ, Lappi V, Wolfgang WJ, et al. Characterization of foodborne outbreaks of Salmonella enterica serovar Enteritidis with whole-genome sequencing single nucleotide polymorphism-based analysis for surveillance and outbreak detection. J Clin Microbiol. 2015;53:3334–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Crowe SJ, Green A, Hernandez K, et al. Utility of combining whole genome sequencing with traditional investigational methods to solve foodborne outbreaks of Salmonella infections associated with chicken: a new tool for tackling this challenging food vehicle. J Food Prot. 2017;80(4):654–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Llarena A-K, Taboada E, Rossi M. Whole-genome sequencing in epidemiology of Campylobacter jejuni infections. J Clin Microbiol. 2017;55(5):1269–75.

    Article  PubMed  PubMed Central  Google Scholar 

  63. McDermott PF, Tyson GH, Kabera C, et al. Whole-genome sequencing for detecting antimicrobial resistance in nontyphoidal Salmonella. Antimicrob Agents Chemother. 2016;60:5515–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhao S, Tyson GH, Chen Y, et al. Whole-genome sequencing analysis accurately predicts antimicrobial resistance phenotypes in Campylobacter spp. Appl Environ Microbiol. 2016;82:459–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ellington MJ, Ekelund O, Aarestrup FM, et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin Microbiol Infect. 2017;23(1):2–22.

    Article  CAS  PubMed  Google Scholar 

  66. Huang AD, Luo C, Pena-Gonzalez A, et al. Metagenomics of two severe foodborne outbreaks provides diagnostic signatures and signs of coinfection not attainable by traditional methods. Appl Environ Microbiol. 2017;83:e02577–16.

    PubMed  PubMed Central  Google Scholar 

  67. Shea S, Kubota KA, Maguire H, et al. Clinical microbiology laboratories’ adoption of culture independent diagnostic tests is a threat to foodborne-disease surveillance in the United States. J Clin Microbiol. 2017;55:10–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather Harbottle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harbottle, H. (2018). Advanced Methods for Detection of Foodborne Pathogens. In: Tang, YW., Stratton, C. (eds) Advanced Techniques in Diagnostic Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-95111-9_9

Download citation

Publish with us

Policies and ethics