Skip to main content
Log in

Candidatus Neoehrlichia Mikurensis—Recent Insights and Future Perspectives on Clinical Cases, Vectors, and Reservoirs in Europe

  • Bacteriology (N Borel, Section Editor)
  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Ticks are among the most important vectors of pathogens concerning animal and human health worldwide. Candidatus Neoehrlichia mikurensis (CNM) is a recently discovered intracellular bacterium of the order Rickettsiales associated with human clinical cases. In this review, we give an overview on the current knowledge of CNM in connection with diagnosis, clinical cases, and treatment and discuss the newest developments in the knowledge on potential vectors and reservoirs.

Recent Findings

Small mammals and in particular rodents seem to be the most likely reservoir hosts for CNM in Europe. Ticks may be competent vectors in which the pathogen is transstadially transmitted. In both, vectors and reservoirs, vertical transmission is controversially discussed. Some recent studies suggested that CNM may be rather rodent- than tick-associated. As regards clinical cases, mainly immunosuppressed persons are affected but evidence of contact to CNM has also been established in some healthy people. Many other aspects such as important life history traits of CNM remain unknown and neglected in both research and diagnosis.

Summary

CNM is a highly interesting tick-borne and rodent-associated pathogen that under the right preconditions can cause severe disease in human beings. The cultivation of this intracellular bacterium of the order Rickettsiales seems to be the most pressing task to tackle in the future research on this pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rizzoli A, Silaghi C, Obiegala A, Rudolf I, Hubálek Z, Földvári G, et al. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: new hazards and relevance for public health. Front Public Health. 2014;2:251. https://doi.org/10.3389/fpubh.2014.00251.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Guillemi EC, Tomassone L, Farber MD. Tick-borne Rickettsiales: molecular tools for the study of an emergent group of pathogens. J Microbiol Methods. 2015;119:87–97. https://doi.org/10.1016/j.mimet.2015.10.009.

    Article  PubMed  Google Scholar 

  3. Portillo A, Santibáñez S, García-Álvarez L, Palomar AM, Oteo JA. Rickettsioses in Europe. Microbes Infect. 2015;17(11):834–8. https://doi.org/10.1016/j.micinf.2015.09.009.

    Article  PubMed  Google Scholar 

  4. Colomba C, Siracusa L, Trizzino M, Gioè C, Giammanco A, Cascio A. Myocarditis in Mediterranean spotted fever: a case report and a review of the literature. JMM Case Rep. 2016;3(4):e005039. https://doi.org/10.1099/jmmcr.0.005039.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wennerås C. Infections with the tick-borne bacterium Candidatus Neoehrlichia mikurensis. Clin Microbiol Infect. 2015;21(7):621–30. https://doi.org/10.1016/j.cmi.2015.02.030.

    Article  PubMed  Google Scholar 

  6. Silaghi C, Beck R, Oteo JA, Pfeffer M, Sprong H. Neoehrlichiosis: an emerging tick-borne zoonosis caused by Candidatus Neoehrlichia mikurensis. Exp Appl Acarol. 2016;68(3):279–97. https://doi.org/10.1007/s10493-015-9935-y.

    Article  PubMed  Google Scholar 

  7. von Loewenich FD, Geissdorfer W, Disque C, Matten J, Schett G, Sakka SG, et al. Detection of “Candidatus Neoehrlichia mikurensis” in two patients with severe febrile illnesses: evidence for a European sequence variant. J Clin Microbiol. 2010;48(7):2630–5. https://doi.org/10.1128/JCM.00588-10.

    Article  Google Scholar 

  8. Maurer FP, Keller PM, Beuret C, Joha C, Achermann Y, Gubler J, et al. Close geographic association of human neoehrlichiosis and tick populations carrying “Candidatus Neoehrlichia mikurensis” in Eastern Switzerland. J Clin Microbiol. 2013;51(1):169–76. https://doi.org/10.1128/JCM.01955-12.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Grankvist A, Andersson PO, Mattsson M, Sender M, Vaht K, Höper L, et al. Infections with the tick-borne bacterium “Candidatus Neoehrlichia mikurensis” mimic noninfectious conditions in patients with B cell malignancies or autoimmune diseases. Clin Infect Dis. 2014;58(12):1716–22. https://doi.org/10.1093/cid/ciu189.

    Article  CAS  PubMed  Google Scholar 

  10. Li H, Jiang JF, Liu W, Zheng YC, Huo QB, Tang K, et al. Human infection with Candidatus Neoehrlichia mikurensis, China. Emerg Infect Dis. 2012;18(10):1636–9. https://doi.org/10.3201/eid1810.120594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jahfari S, Hofhuis A, Fonville M, van der Giessen J, van Pelt W, Sprong H. Molecular detection of tick-borne pathogens in humans with tick bites and erythema migrans, in the Netherlands. PLoS Negl Trop Dis. 2016;10(10):e0005042. https://doi.org/10.1371/journal.pntd.0005042.

    Article  PubMed  PubMed Central  Google Scholar 

  12. • Grankvist A, Sandelin LL, Andersson J, Fryland L, Wilhelmsson P, Lindgren PE, et al. Infections with Candidatus Neoehrlichia mikurensis and cytokine responses in 2 persons bitten by ticks, Sweden. Emerg Infect Dis. 2015;21:1462. https://doi.org/10.3201/eid2108.150060. This study reports erythematous rash caused by Candidatus N. mikurensis in a person bitten by a tick for the first time. Moreover, immunocompetent persons were infected by Candidatus N. mikurensis for unexpectedly long periods, even after symptoms have disappeared.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. • Quarsten H, Grankvist A, Høyvoll L, Myre IB, Skarpaas T, Kjelland V, et al. Candidatus Neoehrlichia mikurensis and Borrelia burgdorferi sensu lato detected in the blood of Norwegian patients with erythema migrans. Ticks Tick Borne Dis. 2017;8:715–20. https://doi.org/10.1016/j.ttbdis.2017.05.004. Quarsten et al. reported CNM in the context with erythema migrans (EM) in humans from Norway. EM is known to occur after a tick bite with an infection of Borrelia burgdorferi s. l. which was thought to be pathognomonic. However, the prevalence for CNM was twice as high in patients with EM as the prevalence for B . burgdorferi s. l.

    Article  CAS  PubMed  Google Scholar 

  14. Welinder-Olsson C, Kjellin E, Vaht K, Jacobsson S, Wennerås C. First case of human “Candidatus Neoehrlichia mikurensis” infection in a febrile patient with chronic lymphocytic leukemia. J Clin Microbiol. 2010;48(5):1956–9. https://doi.org/10.1128/JCM.02423-09.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pekova S, Vydra J, Kabickova H, Frankova S, Haugvicova R, Mazal O, et al. Candidatus Neoehrlichia mikurensis infection identified in 2 hematooncologic patients: benefit of molecular techniques for rare pathogen detection. Diagn Microbiol Infect Dis. 2011;69(3):266–70. https://doi.org/10.1016/j.diagmicrobio.2010.10.004.

    Article  CAS  PubMed  Google Scholar 

  16. Kawahara M, Rikihisa Y, Isogai E, Takahashi M, Misumi H, Suto C, et al. Ultrastructure and phylogenetic analysis of “Candidatus Neoehrlichia mikurensis” in the family Anaplasmataceae, isolated from wild rats and found in Ixodes ovatus ticks. Int J Syst Evol Microbiol. 2004;54(5):1837–43. https://doi.org/10.1099/ijs.0.63260-0.

    Article  CAS  PubMed  Google Scholar 

  17. Fehr JS, Bloemberg GV, Ritter C, Hombach M, Luscher TF, Weber R, et al. Septicemia caused by tick-borne bacterial pathogen Candidatus Neoehrlichia mikurensis. Emerg Infect Dis. 2010;16(7):1127–9. https://doi.org/10.3201/eid1607.091907.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schwieger F, Tebbe CC. A new approach to utilize PCR–single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol. 1998;64(12):4870–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jahfari S, Fonville M, Hengeveld P, Reusken C, Scholte EJ, Takken W, et al. Prevalence of Neoehrlichia mikurensis in ticks and rodents from North-west Europe. Parasit Vectors. 2012;5(1):74–83. https://doi.org/10.1186/1756-3305-5-74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Diniz PPV, Schulz BS, Hartmann K, Breitschwerdt EB. “Candidatus Neoehrlichia mikurensis” infection in a dog from Germany. JCM. 2011;49(5):2059–62. https://doi.org/10.1128/JCM.02327-10.

    Article  Google Scholar 

  21. • Hodžić A, Cézanne R, Duscher GG, Harl J, Glawischnig W, Fuehrer HP. Candidatus Neoehrlichia sp. in an Austrian fox is distinct from Candidatus Neoehrlichia mikurensis, but closer related to Candidatus Neoehrlichia lotoris. Parasit Vectors. 2015;8:539. https://doi.org/10.1186/s13071-015-1163-0. This study presents the occurrence of Candidatus Neoehrlichia sp. in a red fox worldwide for the first time. The Candidatus Neoehrlichia sp. which was found was genetically ( 16S rRNA , groEL ) closely related to Candidatus Neoehrlichia lotoris but clearly distinct from CNM . Moreover, this study presents two new PCR methods for the detection of CNM.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schwameis M, Auer J, Mitteregger D, Simonitsch-Klupp I, Ramharter M, Burgmann H, et al. Anaplasmataceae-specific PCR for diagnosis and therapeutic guidance for symptomatic neoehrlichiosis in immunocompetent host. Emerg Infect Dis. 2016;22(2):281–4. https://doi.org/10.3201/eid2202.141762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Andréasson K, Jönsson G, Lindell P, Gulfe A, Ingvarsson R, Lindqvist E, et al. Recurrent fever caused by Candidatus Neoehrlichia mikurensis in a rheumatoid arthritis patient treated with rituximab. Rheumatology. 2015;54(2):369–71. https://doi.org/10.1093/rheumatology/keu441.

    Article  PubMed  Google Scholar 

  24. Silaghi C, Woll D, Mahling M, Pfister K, Pfeffer M. Candidatus Neoehrlichia mikurensis in rodents in an area with sympatric existence of the hard ticks Ixodes ricinus and Dermacentor reticulatus, Germany. Parasit Vectors. 2012;5(1):285–92. https://doi.org/10.1186/1756-3305-5-285.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Obiegala A, Pfeffer M, Pfister K, Tiedemann T, Thiel C, Balling A, et al. Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum: prevalences and investigations on a new transmission path in small mammals and ixodid ticks. Parasit Vectors. 2014;7:563–72. https://doi.org/10.1186/s13071-014-0563-x.

    PubMed  PubMed Central  Google Scholar 

  26. Burri C, Schumann O, Schumann C, Gern L. Are Apodemus spp. mice and Myodes glareolus reservoirs for Borrelia miyamotoi, Candidatus Neoehrlichia mikurensis, Rickettsia helvetica, R. monacensis and Anaplasma phagocytophilum? Ticks Tick Borne Dis. 2014;5(3):245–51. https://doi.org/10.1016/j.ttbdis.2013.11.007.

    Article  CAS  PubMed  Google Scholar 

  27. Svitálková ZH, Haruštiaková D, Mahríková L, Mojšová M, Berthová L, Slovák M, et al. Candidatus Neoehrlichia mikurensis in ticks and rodents from urban and natural habitats of South-Western Slovakia. Parasit Vectors. 2016;9(1):2. https://doi.org/10.1186/s13071-015-1287-2.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vayssier-Taussat M, Le Rhun BJP, Maaoui N, Galan M, Guivier E, et al. Candidatus Neoehrlichia mikurensis in bank voles, France. Emerg Infect Dis. 2012;18(12):2063–5. https://doi.org/10.3201/eid1812.120846.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Krücken J, Schreiber C, Maaz D, Kohn M, Demeler J, Beck S, et al. A novel high-resolution melt PCR assay discriminates Anaplasma phagocytophilum and “Candidatus Neoehrlichia mikurensis”. J Clin Microbiol. 2013;51(6):1958–61. https://doi.org/10.1128/JCM.00284-13.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Szekeres S, Coipan EC, Rigo K, Majoros G, Jahfari S, Sprong H, et al. Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum in natural rodent and tick communities in Southern Hungary. Ticks Tick Borne Dis. 2015;6(2):111–6. https://doi.org/10.1016/j.ttbdis.2014.10.004.

    Article  PubMed  Google Scholar 

  31. Beninati T, Piccolo G, Rizzoli A, Genchi C, Bandi C. Anaplasmataceae in wild rodents and roe deer from Trento Province (northern Italy). Eur J Clin Microbiol Infect Dis. 2006;25(10):677–8. https://doi.org/10.1007/s10096-006-0196-x.

    Article  CAS  PubMed  Google Scholar 

  32. Dvoroznakova E, Kolodziej-Sobocinska M, Hurníková Z, Víchová B, & Zub K. Prevalence of zoonotic pathogens in wild rodents living in the Bialowieza Primeval Forest, Poland. Ann Parasitol. 2016;62(Suppl).

  33. Rar VA, Livanova NN, Panov VV, Doroschenko EK, Pukhovskaya NM, Vysochina NP, et al. Genetic diversity of Anaplasma and Ehrlichia in the Asian part of Russia. Ticks Tick Borne Dis. 2010;1(1):57–65. https://doi.org/10.1016/j.ttbdis.2010.01.002.

    Article  PubMed  Google Scholar 

  34. Vichova B, Majlathova V, Novakova M, Stanko M, Hviscova I, Pangracova L, et al. Anaplasma infections in ticks and reservoir host from Slovakia. Infect Genet Evol. 2014;22:265–72. https://doi.org/10.1016/j.meegid.2013.06.003.

    Article  CAS  PubMed  Google Scholar 

  35. Spitalska E, Boldis V, Kostanova Z, Kocianova E, Stefanidesova K. Incidence of various tick-borne microorganisms in rodents and ticks of central Slovakia. Acta Virol. 2008;52(3):175–9.

    CAS  PubMed  Google Scholar 

  36. Blaňarová L, Stanko M, Miklisová D, Víchová B, Mošanský L, Kraljik J, et al. Presence of Candidatus Neoehrlichia mikurensis and Babesia microti in rodents and two tick species (Ixodes ricinus and Ixodes trianguliceps) in Slovakia. Ticks Tick Borne Dis. 2016;7(2):319–26. https://doi.org/10.1016/j.ttbdis.2015.11.008.

    Article  PubMed  Google Scholar 

  37. •• Andersson M, Scherman K, Raberg L. Infection dynamics of the tick-borne pathogen ‘Candidatus Neoehrlichia mikurensis’ and coinfections with Borrelia afzelii in bank voles in Southern Sweden. Appl Environ Microbiol. 2014a;80:1645–9. https://doi.org/10.1128/AEM.03469-13. This study presents a high co-infection rate of Borrelia afzelii and CNM (46%) in voles for the first time. The co-infection was significantly more likely than a separate infection of each pathogen regarded separately; however, the clearance rate of CNM was significantly higher than that of B . afzelii . The high level of co-infections can be caused by interactions between the pathogens or might reflect variation in general susceptibility among voles.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Andersson M, Raberg L. Wild rodents and novel human pathogen Candidatus Neoehrlichia mikurensis, Southern Sweden. Emerg Infect Dis. 2011;17(9):1716–8. https://doi.org/10.3201/eid1709.101058.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Andersson M, Bartkova S, Lindestad O, Råberg L. Co-infection with “Candidatus Neoehrlichia Mikurensis” and Borrelia afzelii in Ixodes ricinus ticks in southern Sweden. Vector Borne Zoonotic Dis. 2013;13(7):438–42. https://doi.org/10.1089/vbz.2012.1118.

    Article  PubMed  Google Scholar 

  40. Welc-Faleciak R, Kowalec M, Karbowiak G, Bajer A, Behnke JM, Sinski E. Rickettsiaceae and Anaplasmataceae infections in Ixodes ricinus ticks from urban and natural forested areas of Poland. Parasit Vectors. 2014;7(1):121–33. https://doi.org/10.1186/1756-3305-7-121.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Földvari G, Jahfari S, Rigo K, Jablonszky M, Szekeres S, Majoros G, et al. Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum in urban hedgehogs. Emerg Infect Dis. 2014;20(3):496–8. https://doi.org/10.3201/eid2003.130935.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Beck R, Čurik VČ, Ivana R, Nikica Š, Anja V. Identification of “Candidatus Neoehrlichia mikurensis” and Anaplasma species in wildlife from Croatia. Parasit Vectors. 2014;7(Suppl 1):O28. https://doi.org/10.1186/1756-3305-7-S1-O28.

    Article  PubMed Central  Google Scholar 

  43. Hofmann-Lehmann R, Wagmann N, Meli ML, Riond B, Novacco M, Joekel D, et al. Detection of “Candidatus Neoehrlichia mikurensis” and other Anaplasmataceae and Rickettsiaceae in Canidae in Switzerland and Mediterranean countries. Schweiz Arch Tierheilkd. 2016;158(10):691–700. https://doi.org/10.17236/sat00087.

    Article  CAS  PubMed  Google Scholar 

  44. Hornok S, Kováts D, Csörgő T, Meli ML, Gönczi E, Hadnagy Z, et al. Birds as potential reservoirs of tick-borne pathogens: first evidence of bacteraemia with Rickettsia helvetica. Parasit Vectors. 2014;7(1):128. https://doi.org/10.1186/1756-3305-7-128.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sandelin LL, Tolf C, Larsson S, Wilhelmsson P, Salaneck E, Jaenson TG, et al. Candidatus Neoehrlichia mikurensis in ticks from migrating birds in Sweden. PLoS One. 2015;10(7):e0133250. https://doi.org/10.1371/journal.pone.0133250.

    Article  Google Scholar 

  46. van Overbeek L, Gassner F, van der Plas CL, Kastelein P, Nunes da Rocha U, Takken W. Diversity of Ixodes ricinus tick-associated bacterial communities from different forests. FEMS Microbiol Ecol. 2008;66(1):72–84. https://doi.org/10.1111/j.1574-6941.2008.00468.x.

    Article  PubMed  Google Scholar 

  47. Shpynov S, Fournier PE, Rudakov N, Tarasevich I, Raoult D. Detection of members of the genera Rickettsia, Anaplasma, and Ehrlichia in ticks collected in the Asiatic part of Russia. Ann N Y Acad Sci. 2006;1078(1):378–83. https://doi.org/10.1196/annals.1374.075.

    Article  CAS  PubMed  Google Scholar 

  48. Movila A, Alekseev AN, Dubinina HV, Toderas I. Detection of tick-borne pathogens in ticks from migratory birds in the Baltic region of Russia. Med Vet Entomol. 2013a;27(1):113–7. https://doi.org/10.1111/j.1365-2915.2012.01037.x.

    Article  CAS  PubMed  Google Scholar 

  49. Glatz M, Mullegger RR, Maurer F, Fingerle V, Achermann Y, Wilske B, et al. Detection of Candidatus Neoehrlichia mikurensis, Borrelia burgdorferi sensu lato genospecies and Anaplasma phagocytophilum in a tick population from Austria. Ticks Tick Borne Dis. 2014;5(2):139–44. https://doi.org/10.1016/j.ttbdis.2013.10.006.

    Article  PubMed  Google Scholar 

  50. Derdakova M, Vaclav R, Pangracova-Blanarova L, Selyemova D, Koci J, Walder G, et al. Candidatus Neoehrlichia mikurensis and its co-circulation with Anaplasma phagocytophilum in Ixodes ricinus ticks across ecologically different habitats of Central Europe. Parasit Vectors. 2014;7(1):160–3. https://doi.org/10.1186/1756-3305-7-160.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jahfari S, Ruyts SC, Frazer-Mendelewska E, Jaarsma R, Verheyen K, Sprong H. Melting pot of tick-borne zoonoses: the European hedgehog contributes to the maintenance of various tick-borne diseases in natural cycles urban and suburban areas. Parasit Vectors. 2017;10(1):134. https://doi.org/10.1186/s13071-017-2065-0.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hodžić A, Fuehrer HP, Duscher GG. First molecular evidence of zoonotic bacteria in ticks in Bosnia and Herzegovina. Transbound Emerg Dis. 2017;64(4):1313–6. https://doi.org/10.1111/tbed.12473.

    Article  PubMed  Google Scholar 

  53. Nader J, Król N, Pfeffer M, Ohlendorf V, Marklewitz M, Junglen S, Obiegala A. The diversity of ticks and tick-borne pathogens in Bulgarian Black Sea area. Parasit Vectors in press.

  54. Richter D, Matuschka FR. “Candidatus Neoehrlichia mikurensis,” Anaplasma phagocytophilum, and Lyme disease spirochetes in questing European vector ticks and in feeding ticks removed from people. J Clin Microbiol. 2012;50(3):943–7. https://doi.org/10.1128/JCM.05802-11.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Venclikova K, Rudolf I, Mendel J, Betasova L, Hubalek Z. Rickettsiae in questing Ixodes ricinus ticks in the Czech Republic. Ticks Tick Borne Dis. 2014;5(2):135–8. https://doi.org/10.1016/j.ttbdis.2013.09.008.

    Article  PubMed  Google Scholar 

  56. Fertner ME, Molbak L, Boye Pihl TP, Fomsgaard A, Bodker R. First detection of tick-borne “Candidatus Neoehrlichia mikurensis” in Denmark 2011. Euro Surveill. 2012;17:1–3. https://doi.org/10.1128/AEM.03469-13.

    Google Scholar 

  57. Michelet L, Delannoy S, Devillers E, Umhang G, Aspan A, Juremalm M, et al. High-throughput screening of tick-borne pathogens in Europe. Front Cell Infect Microbiol. 2014;4:1–13. https://doi.org/10.3389/fcimb.2014.00103.

    Article  Google Scholar 

  58. Stensvold CR, Al Marai D, Andersen LOB, Krogfelt KA, Jensen JS, Larsen KS, et al. Babesia spp. and other pathogens in ticks recovered from domestic dogs in Denmark. Parasit Vectors. 2015;8:262. https://doi.org/10.1186/s13071-015-0843-0.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ivanova A, Geller J, Katargina O, Värv K, Lundkvist Å, Golovljova I. Detection of Candidatus Neoehrlichia mikurensis and Ehrlichia muris in Estonian ticks. Ticks Tick Borne Dis. 2017;8(1):13–7. https://doi.org/10.1016/j.ttbdis.2016.08.010.

    Article  PubMed  Google Scholar 

  60. Sormunen JJ, Penttinen R, Klemola T, Hänninen J, Vuorinen I, Laaksonen M, et al. Tick-borne bacterial pathogens in southwestern Finland. Parasit Vectors. 2016;9(1):168. https://doi.org/10.1186/s13071-016-1449-x.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Schreiber C, Krücken J, Beck S, Maaz D, Pachnicke S, Krieger K, et al. Pathogens in ticks collected from dogs in Berlin/Brandenburg, Germany. Parasit Vectors. 2014;7(1):535. https://doi.org/10.1186/s13071-014-0535-1.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hansford KM, Fonville M, Jahfari S, Sprong H, Medlock JM. Borrelia miyamotoi in host-seeking Ixodes ricinus ticks in England. Epidemiol Infect. 2015;143(05):1079–87. https://doi.org/10.1017/S0950268814001691.

    Article  CAS  PubMed  Google Scholar 

  63. Tijsse-Klasen E, Hansford K, Jahfari S, Phipps P, Sprong H, Medlock JM. Spotted fever group rickettsiae in Dermacentor reticulatus and Haemaphysalis punctata ticks in the UK. Parasit Vectors. 2013;6:1–5. https://doi.org/10.1186/1756-3305-6-212.

    Article  Google Scholar 

  64. Hornok S, Meli ML, Gonczi E, Hofmann-Lehmann R. First evidence of Candidatus Neoehrlichia mikurensis in Hungary. Parasit Vectors. 2013;6:267–9. https://doi.org/10.1186/1756-3305-6-267.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Capelli G, Ravagnan S, Montarsi F, Ciocchetta S, Cazzin S, Porcellato E, et al. Occurrence and identification of risk areas of Ixodes ricinus-borne pathogens: a cost-effectiveness analysis in north-eastern Italy. Parasit Vectors. 2012;5(1):61–70. https://doi.org/10.1186/1756-3305-5-61.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Otranto D, Dantas-Torres F, Giannelli A, Latrofa MS, Cascio A, Cazzin S, et al. Ticks infesting humans in Italy and associated pathogens. Parasit Vectors. 2014;7(1):328–36. https://doi.org/10.1186/1756-3305-7-328.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Brouqui P, Sanogo YO, Caruso G, Merola F, Raoult D. Candidatus Ehrlichia walkerii: a new Ehrlichia detected in Ixodes ricinus tick collected from asymptomatic humans in Northern Italy. Ann N Y Acad Sci. 2003;990(1):134–40. https://doi.org/10.1111/j.1749-6632.2003.tb07352.x.

    Article  CAS  PubMed  Google Scholar 

  68. Baráková I, Derdáková M, Selyemová D, Chvostáč M, Špitalská E, Rosso F, Collini M, Rosà R, Tagliapietra V, Girardi M, Ramponi C, Hauffe HC, Rizzoli A. Tick-borne pathogens and their reservoir hosts in northern Italy. Ticks Tick Borne Dis. 2017. https://doi.org/10.1016/j.ttbdis.2017.08.012.

  69. Movila A, Toderas I, Uspenskaia I, Conovalov J. Molecular detection of tick-borne pathogens in Ixodes ricinus from Moldova collected in 1960. Ticks Tick Borne Dis. 2013b;4(4):359–61. https://doi.org/10.1016/j.ttbdis.2012.12.004.

    Article  PubMed  Google Scholar 

  70. Jenkins A, Kristiansen BE, Allum AG, Aakre RK, Strand L, Kleveland EJ, et al. Borrelia burgdorferi sensu lato and Ehrlichia spp. in Ixodes ticks from southern Norway. J Clin Microbiol. 2001;39(10):3666–71. https://doi.org/10.1128/JCM.39.10.3666-3671.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Król N, Obiegala A, Pfeffer M, Lonc E, Kiewra D. Detection of selected pathogens in ticks collected from cats and dogs in the Wrocław Agglomeration, South-West Poland. Parasit Vectors. 2016;9(1):351. https://doi.org/10.1186/s13071-016-1632-0.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Andersson M, Zaghdoudi-Allan N, Tamba P, Stefanache M, Chitimia L. Co-infection with “Candidatus Neoehrlichia mikurensis” and Borrelia afzelii in an Ixodes ricinus tick that has bitten a human in Romania. Ticks Tick Borne Dis. 2014b;5(6):706–8. https://doi.org/10.1016/j.ttbdis.2014.05.013.

    Article  PubMed  Google Scholar 

  73. Kalmár Z, Sprong H, Mihalca AD, Gherman CM, Dumitrache MO, Coipan EC, et al. Borrelia miyamotoi and Candidatus Neoehrlichia mikurensis in Ixodes ricinus ticks, Romania. Emerg Infect Dis. 2016;22(3):550–1. https://doi.org/10.3201/eid2203.150140.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Raileanu C, Moutailler S, Pavel I, Porea D, Mihalca AD, Savuta G, Vayssier-Taussat M. Borrelia diversity and co-infection with other tick borne pathogens in ticks. Front Cell Infect Microbiol. 2017;7. https://doi.org/10.3389/fcimb.2017.00036.

  75. Rar VA, Epikhina TI, Livanova NN, Panov VV, Doroshenko EK, Pukhovskaia NM, et al. Study of the heterogeneity of 16S rRNA gene and groESL operone in the DNA samples of Anaplasma phagocytophilum, Ehrlichia muris, and “Candidatus Neoehrlichia mikurensis” determined in the Ixodes persulcatus ticks in the area of Urals, Siberia, and far east of Russia. Mol Gen Mikrobiol Virusol. 2011;2:17–23.

    Google Scholar 

  76. Alekseev AN, Dubinina HV, Van De Pol I, Schouls LM. Identification of Ehrlichia spp. and Borrelia burgdorferi in Ixodes ticks in the Baltic regions of Russia. J Clin Microbiol. 2001;39(6):2237–42. https://doi.org/10.1128/JCM.39.6.2237-2242.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Potkonjak A, Gutiérrez R, Savić S, Vračar V, Nachum-Biala Y, Jurišić A. Molecular detection of emerging tick-borne pathogens in Vojvodina, Serbia. Ticks Tick Borne Dis. 2016;7(1):199–203. https://doi.org/10.1016/j.ttbdis.2015.10.007.

    Article  PubMed  Google Scholar 

  78. Pangracova L, Derdakova M, Pekarik L, Hviscova I, Vichova B, Stanko M, et al. Ixodes ricinus abundance and its infection with the tick-borne pathogens in urban and suburban areas of Eastern Slovakia. Parasit Vectors. 2013;6(1):238–45. https://doi.org/10.1186/1756-3305-6-238.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Palomar AM, Garcia-Alvarez L, Santibanez S, Portillo A, Oteo JA. Detection of tick-borne “Candidatus Neoehrlichia mikurensis” and Anaplasma phagocytophilum in Spain in 2013. Parasit Vectors. 2014;7(1):57–9. https://doi.org/10.1186/1756-3305-7-57.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Jönsson J. Identification of the tick-borne pathogens Anaplasma phagocytophilum, Neoehrlichia mikurensis and Rickettsia in Swedish ticks: investigation of transovarial transmission and co-infection. Kalmar. Examination Project Work: Faculty of Health and Life Sciences, Linneaus University; 2016.

    Google Scholar 

  81. Lommano E, Bertaiola L, Dupasquier C, Gern L. Infections and coinfections of questing Ixodes ricinus ticks by emerging zoonotic pathogens in Western Switzerland. Appl Environ Microbiol. 2012;78(13):4606–12. https://doi.org/10.1128/AEM.07961-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lommano E, Dvorak C, Vallotton L, Jenni L, Gern L. Tick-borne pathogens in ticks collected from breeding and migratory birds in Switzerland. Ticks Tick Borne Dis. 2014;5(6):871–82. https://doi.org/10.1016/j.ttbdis.2014.07.001.

    Article  PubMed  Google Scholar 

  83. Oechslin CP, Heutschi D, Lenz N, Tischhauser W, Péter O, Rais O, et al. Prevalence of tick-borne pathogens in questing Ixodes ricinus ticks in urban and suburban areas of Switzerland. Parasit Vectors. 2017;10(1):558. https://doi.org/10.1186/s13071-017-2500-2.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Schouls LM, Van De Pol I, Rijpkema SG, Schot CS. Detection and identification of Ehrlichia, Borrelia burgdorferi sensu lato, and Bartonella species in Dutch Ixodes ricinus ticks. J Clin Microbiol. 1999;37(7):2215–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Coipan E, Jahfari S, Fonville M, Maassen CB, van der Giessen J, Takken W, et al. Spatiotemporal dynamics of emerging pathogens in questing Ixodes ricinus. Front Cell Infect Microbiol. 2013;3:1–11. https://doi.org/10.3389/fcimb.2013.00036.

    Article  Google Scholar 

  86. Tijsse-Klasen E, Jacobs JJ, Swart A, Fonville M, Reimerink JH, Brandenburg AH, et al. Small risk of developing symptomatic tick-borne diseases following a tick bite in The Netherlands. Parasit Vectors. 2011;4(1):17–24. https://doi.org/10.1186/1756-3305-4-17.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Krawczyk AI, van Leeuwen AD, Jacobs-Reitsma W, Wijnands LM, Bouw E, Jahfari S, et al. Presence of zoonotic agents in engorged ticks and hedgehog faeces from Erinaceus europaeus in (sub) urban areas. Parasit Vectors. 2015;8(1):210. https://doi.org/10.1186/s13071-015-0814-5.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Heylen D, Fonville M, Docters van Leeuwen A, Stroo A, Duisterwinkel M, van Wieren S, et al. Pathogen communities of songbird-derived ticks in Europe’s low countries. Parasit Vectors. 2017;10(1):497. https://doi.org/10.1186/s13071-017-2423-y.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Silaghi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Bacteriology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obiegala, A., Silaghi, C. Candidatus Neoehrlichia Mikurensis—Recent Insights and Future Perspectives on Clinical Cases, Vectors, and Reservoirs in Europe. Curr Clin Micro Rpt 5, 1–9 (2018). https://doi.org/10.1007/s40588-018-0085-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-018-0085-y

Keywords

Navigation