Skip to main content
Log in

Tangents to Chow groups: on a question of Green–Griffiths

  • Published:
Bollettino dell'Unione Matematica Italiana Aims and scope Submit manuscript

Abstract

We examine the tangent groups at the identity, and more generally the formal completions at the identity, of the Chow groups of algebraic cycles on a nonsingular quasiprojective algebraic variety over a field of characteristic zero. We settle a question recently raised by Mark Green and Phillip Griffiths concerning the existence of Bloch–Gersten–Quillen-type resolutions of algebraic K-theory sheaves on infinitesimal thickenings of nonsingular varieties, and the relationships between these sequences and their “tangent sequences,” expressed in terms of absolute Kähler differentials. More generally, we place Green and Griffiths’ concrete geometric approach to the infinitesimal theory of Chow groups in a natural and formally rigorous structural context, expressed in terms of nonconnective K-theory, negative cyclic homology, and the relative algebraic Chern character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In [10] this condition is called strict effaceability (definition 5.1.8, page 28) but we drop the adjective “strict” since this is the only such property used here.

References

  1. Angéniol, B., Lejeune-Jalabert, M.: Calcul différentiel et classes caractéristiques en géométrie algébrique. Travaux en Cours, 38. Hermann, Paris (1989)

  2. Asakura, M.: Motives and algebraic de Rham cohomology. The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), 133–154. CRM Proc. Lecture Notes, vol. 24. Amer. Math. Soc., Providence (2000)

  3. Balmer, P.: Niveau spectral sequences on singular schemes and failure of generalized Gersten conjecture. Proc. Am. Math. Soc. 137(1), 99–106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bloch, S.: On the tangent space to Quillen \(K\)-theory. In: Bass H. (ed.) Higher \(K\)-Theories. Lecture Notes in Mathematics, vol. 341, pp. 205–210 (1972)

  5. Bloch, S.: Algebraic \(K\)-theory and algebraic geometry, volume 341 of Lecture Notes in Mathematics, pp. 259–265 (1972)

  6. Bloch, S.: \(K_2\) and algebraic cycles. Ann. Math. 99(2), 349–379 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bloch, S., Ogus, A.: Gersten’s conjecture and the homology of schemes. Ann. Sci. École Norm. Sup. (4) 7, 181–201 (1974)

  8. Bloch, S., Esnault, H., Kerz, M.: Deformation of algebraic cycle classes in characteristic 0 (2014). arxiv:1310.1773

  9. Cathelineau, J.-L.: \(\lambda \)-structures in algebraic \(K\)-theory and cyclic homology. \(K\)-Theory 4, 591–606 (1991)

  10. Colliot-Thélène, J.-L., Hoobler, R.T., Kahn, B.: The Bloch–Ogus–Gabber theorem. Algebraic K-theory (Toronto, ON, 1996), 31–94. Fields Inst. Commun., 16, Amer. Math. Soc., Providence, RI (1997)

  11. Corti\(\tilde{\rm n}\)as, G., Haesemeyer, C., Schlichting, M., Weibel, C.: Cyclic homology, cdh-cohomology and negative \(K\)-theory. Ann. Math. (2) 167(2), 549–573 (2008)

  12. Corti\(\tilde{\rm n}\)as, G., Haesemeyer, C., Weibel, C.: Infinitesimal cohomology and the Chern character to negative cyclic homology. Math. Ann. 344(4), 891–922 (2009)

  13. Cortiñas, G., Weibel, C.: Relative Chern characters for nilpotent ideals. In: Algebraic Topology, Abel Symposia, vol. 4, pp. 61–82 (2009)

  14. Dribus, B.F.: On the infinitesimal theory of Chow groups. Ph.D. dissertation, LSU (2014)

  15. Gabber, O.: Gersten’s conjecture for some complexes of vanishing cycles. Manuscr. Math. 85, 323–343 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Geller, S., Weibel, C.: Hodge decompositions of Loday symbols in K-theory and cyclic homology. K-theory 8, 587–632 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gersten, S.M.: Some exact sequences in the higher \(K\)-theory of rings, volume 341 of Lecture Notes in Mathematics, pp. 211–243 (1972)

  18. Gillet, H., Soulé, C.: Intersection theory using Adams operations. Inventiones mathematicae 90, 243–277 (1987) (Springer-Verlag)

  19. Gillet, H., Soulé, C.: Filtrations on higher K-theory. In: Algebraic K-theory volume 67 of Proc. Symp. Pure Math., pp. 89–148. AMS (1999)

  20. Goodwillie, T.G.: Relative algebraic K-theory and cyclic homology. Ann. Math. (2) 124(2), 347–402 (1986)

  21. Grayson, D.: Exterior power operations on algebraic K-theory. K-theory 3, 247–260 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grayson, D.: Adams operations on higher K-theory. K-theory 6, 97–111 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Green, M., Griffiths, P.: On the tangent space to the space of algebraic cycles on a smooth algebraic variety. In: Griffiths, P.A., Mather, J.N., Stein, E.M. (eds.) Annals of Mathematics Studies, vol. 157, Princeton University Press (2005)

  24. Green, M., Griffiths, P.: Hodge-theoretic invariants for algebraic cycles. Int. Math. Res. Not. (9), 477–510 (2003)

  25. Grothendieck, A., Raynaud, M., Laszlo, Y. (eds.): Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2). Documents Mathématiques, 4, Paris: Société Mathématique de France. arXiv:math/0511279

  26. Grothendieck, A., et al.: Théorie des Intersections et Théorème de Riemann-Roch, Seminaire de Geometrie Algebrique du Bois Marie 6 (republished as Lecture Notes in Mathematics, vol. 225 (1971))

  27. Hartshorne, R.: Residues and duality. Volume 20 in Lecture Notes in Mathematics. Springer (1966)

  28. Hesselholt, L.: \(K\)-theory of truncated polynomial algebras. In: Friedlander, E.M., Grayson, D.R. (eds.) Handbook of K-theory, vol. 1, 2, pp. 71–110. Springer, Berlin (2005)

  29. Jannsen, U.: Motivic sheaves and filtrations on Chow groups. In: Motives (Seattle, WA, 1991), 245–302. Proc. Sympos. Pure Math., vol. 55, Part 1. Amer. Math. Soc., Providence (1994)

  30. Keller, B.: Invariance and localization for cyclic homology of DG algebras, 1996. J. Pure Appl. Algebra 123(1–3), 223–273 (1998)

  31. Keller, B.: On the cyclic homology of exact categories, 1996. (Preprint)

  32. Keller, B.: On the cyclic homology of ringed spaces and schemes. Doc. Math. 3, 231–259 (1998)

    MathSciNet  MATH  Google Scholar 

  33. Kerz, M.: Milnor K-theory of local rings. Thesis, Universität Regensburg (2008)

  34. Levine, M.: Lambda-operations, \(K\)-theory and motivic cohomology. Algebraic K-theory (Toronto, ON, 1996), pp. 131–184. Fields Inst. Commun., vol. 16. Amer. Math. Soc., Providence, RI (1997)

  35. Loday, J.-L.: Opérations sur l’homologie cyclique des algèbres commutatives. Invent. Math. 96(1), 205–230 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Loday, J.L.: Cyclic homology. Grundlehren der mathematischen Wissenschaften, vol. 301, 2nd edn. Springer (1998). Appendix E by María O. Ronco. chapter 13 by the author in collaboration with Teimuraz Pirashvili

  37. Maazen, H., Stienstra, J.: A presentation of \(K_2\) of split radical pairs. J. Pure Appl. Algebra 10, 271–294 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  38. Patel, D., Ravindra, G.V.: Weak Lefschetz for Chow groups: infinitesimal lifting. Homol. Homotopy Appl. 16(2), 65–84 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Quillen, D.: Higher algebraic \(K\)-theory I. Lecture Notes in Mathematics, vol. 341, pp. 85–147 (1972)

  40. Schlichting, M.: Higher algebraic K-theory. In: Topics in Algebraic and Topological K-theory, pp. 167–241. Lecture Notes in Math., 2008. Springer, Berlin (2011)

  41. Soulé, C.: Opérations en K-théorie algébrique. Can. J. Math. 37, 488–550 (1985)

    Article  MATH  Google Scholar 

  42. Stienstra, J.: On the formal completion of the Chow group \(CH^2(X)\) for a smooth projective surface in characteristic 0. Nederl. Akad. Wetensch. Indag. Math. 45(3), 361–382 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  43. Stienstra, J.: Cartier-Dieudonné theory for Chow groups. J. Reine Angew. Math. 355, 1–66 (1985) (correction. J. Reine Angew. Math. 362, 218–220 (1985))

  44. Thomason, R.W.: Algebraic K-theory and étale cohomology. Ann. Sci. École Norm. Sup. (4) 18(3), 437–552 (1985)

  45. Thomason, R.W., Trobaugh, T.: Higher algebraic K-theory of schemes and of derived categories. The Grothendieck Festschrift, vol. III, pp. 247–435. Progr. Math., vol. 88. Birkhuser Boston, Boston, MA (1990)

  46. van der Kallen, W.: Le \(K_2\) des nombres duaux. Comptes Rendus de l’Académie des Sciences Paris, Série A 273, 1204–1207 (1971)

    MATH  Google Scholar 

  47. Weibel, C.: Pic is a contracted functor. Invent. Math. 103, 351–377 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  48. Weibel, C.: Cyclic homology for schemes. Proc. Am. Math. Soc. 124(6), 1655–1662 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  49. Weibel, C.: The \(K\)-Book: An Introduction to Algebraic \(K\)-Theory. Graduate Studies in Mathematics, vol. 145. American Mathematical Society, Providence (2013)

  50. Yang, S.: Higher algebraic K-theory and tangent spaces to Chow groups. Thesis, Louisiana State University (2012)

Download references

Acknowledgements

We would like to thank Marco Schlichting for his generous assistance in this investigation. J. W. Hoffman was supported in part by NSA Grant 115-60-5012 and NSF Grant OISE-1318015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Hoffman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dribus, B.F., Hoffman, J.W. & Yang, S. Tangents to Chow groups: on a question of Green–Griffiths. Boll Unione Mat Ital 11, 205–244 (2018). https://doi.org/10.1007/s40574-017-0123-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40574-017-0123-3

Keywords

Mathematics Subject Classification

Navigation