Skip to main content
Log in

The central limit theorem in Lipschitz domains

  • Published:
Bollettino dell'Unione Matematica Italiana Aims and scope Submit manuscript

Abstract

Let \(z (n) \in {\mathbb {Z}}^d, n = 0,1,\ldots ,\) be a centered random walk stopped the first time it exits \(\Omega \subset {\mathbb {R}}^d\) some “upper half space” with Lipschitz boundary (cf. Sect. 1.2.1) and let \(p_n^{\mu } (x,y)\) be the transition probability (\(\mu \) as in Sect. 1.2.2). Let \(p_t (x, y) \ x, y \in \Omega , t > 0\), be the transition density of the normalized Brownian motion stopped upon exit from \(\Omega \). I give an optimal estimate of \(p_t^{\mu } - p_t\) that is the generalization of the Edgeworth expansion of the Central Limit Theorem to Lipschitz domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feller, W.: An Introduction to Probability Theory and its Applications, vol. I and II, Wiley, New York (1968)

  2. Gnedenko, B.V., Kolmogorov, A.N.: Limit Distributions for Sums of Independent Random Variables, Addison Wesley, Reading (1954)

  3. Ibragimov, I.A., Linic, Yu. V.: Independent and Stationary Sequences of Random Variables. Wotters-Noordhoft, Groningen (1971)

  4. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral functionals. Springer, Berlin (1991)

  5. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978)

  6. Varopoulos, N.Th.: The discrete and classical Dirichlet problem. Milan J. Math. 77, 397–436 (2009)

  7. Varopoulos, N.Th.: The central limit theorem in Lipschitz domains (an overview and the Conformal Invariance). Math. Proc. Cambridge Philos. Soc. 139(1), 161–180 (2005)

  8. Varopoulos, N.Th.: Potential theory in Lipschitz domains. Can. J. Math. 53(5), 1057–1120 (2001)

  9. Fabes, F., Garofalo, N., Salsa, S.: A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations. Illinois J. Math. 30, 536–565 (1986)

    MATH  MathSciNet  Google Scholar 

  10. Aronson, D.G.: Bounds for the fundamental solution of a parabolic equation. Bull. Amer. Math. Soc. 73, 890–896 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  11. Varopoulos, NTh: Gaussian estimates in Lipschitz domains. Can. J. Math. 55(2), 401–431 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Varopoulos, NTh: Diffusion on Lie groups (III). Can. J. Math. 48(3), 641–671 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Davies, E.B.: Gaussian upper bounds for the heat kernels of some second-order operators on Riemannian manifolds. J. Funct. Anal. 80, 16–32 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Salsa, S.: Some properties of nonnegative solutions of parabolic differential operators. Ann. Math. Para. Appl. 128, 193–206 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nyström, K.: The Dirichlet problem for second order parabolic operators. Indiana Univ. Math. J. 46(1), 183–245 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jerison, D., Kenig, C.: Boundary behaviour of harmonic functions in nontangentially accessible domains. Adv. Math. 46, 80–147 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  17. Doob, J.L.: Classical Potential Theory and its Probabilistic Counterpart. Springer, Berlin

  18. Usakov, V.I.: Stabilization of Solutions of the Third Mixed Problem for a Second-Order Parabolic Equation in a Noncylindrical Domain. Math. Sb., p 153 (1980) [Translations Math. USSR-Sb. (1) 39 (1981) p. 87–105]

  19. Kenig, C.E.: Harmonic analysis techniques for second order elliptic boundary value problems. C.B.M.S. 83 (1994)

  20. Varopoulos, N.Th.: Parabolic singular integrals in probability theory. Milano J. Math. 78 (2010)

  21. Alexopoulos, G.: An application of homogenization theory to harmonic analysis: Harnack inequalities and Riesz transforms on Lie groups of polynomial growth. Can. J. Math. 44(4), 691–727 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lawler, G.P.: Intersection of Random Walks. Birdhaüser, Basel

  23. Lawler, G.P., Polaski, T.W.: Harnack inequalities and difference estimates for random walks with infinite range. J Theor Prob 6(4), 781–802 (1993)

  24. Lawler, G.P.: Estimates for differences and Harnack inequalities for difference operators coming from random walks with symmetric spatially inhomogeneous increments. Proc. London Math. Soc. 63(3), 552–568 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhikov, V.V.: A special approach to the asymptotic problems of diffusion. Diff. Uravnenia 25(1), 44–55 (1989) (English Translation Diff. Equations 25.1, 1989, pp. 33–39)

  26. Sevastianova, E.V.: Asymptotic expansion of a solution of a second order elliptic equation with rapidly oscillating periodic coefficients problem. Sbornik 115, 204–222 (1981)(English Translation, Math. USSR Sb 43 (1982), pp. 181–198)

  27. Hebish, W., Saloff-Coste, L.: Gaussian estimates for Markov chains and random walks on groups. Ann. Prob. 21(2), 673–704 (1993)

    Article  Google Scholar 

  28. Fabes, F.B., Strook, D.: A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash. Arch. Rational Mech. Anal. 96(4), 327–338 (1986)

  29. Fabes, E.B., Safonov, M.V.: Behaviour near the boundary of positive solutions of second order parabolic equations. J. Fourier Anal. Appl. 3, Special Issue (1997)

  30. Stein, E.M.: Harmonic Analysis Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton

  31. Kaufman, R., Wu, J.S.: Singular parabolic measures. Compositio Math. 40(2), 243–250 (1980)

  32. Brown, R.M.: The method of layer potentials for the heat equation in Lipschitz cylinders. Am. J. Math. 111, 339–379 (1989)

    Article  MATH  Google Scholar 

  33. Brown, R.M.: Area integral estimates for caloric functions. Transl. A.M.S. 315(2), 565–589 (1989)

  34. Stein, F.M.: Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton

  35. Hofmann, S., Lewis, J.L.: Ann. Math. 144, 349–420 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  36. Fabes, E.G., Jodeit, Jr. M., Riviere, N.M.: Acta Math. 131(3–4), 165–186 (1978)

  37. Breiman, L.: Probability. Addison-Wesley (1968)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Th. Varopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varopoulos, N.T. The central limit theorem in Lipschitz domains. Boll Unione Mat Ital 7, 103–156 (2014). https://doi.org/10.1007/s40574-014-0005-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40574-014-0005-x

Mathematics Subject Classfication (1991)

Navigation